Skip to main content
Log in

Letter: State of Matter for Effective Yang-Mills Fields and Energy Conditions

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It has been known that the Penrose-Hawking energy conditions are satisfied by conventional matter. The scalar fields employed in inflationary models can violate the strong energy condition, but not the weak energy condition. Recent observational data of the cosmic microwave background radiation seem to favor a perturbation spectrum index n > 1, which implies that the weak energy condition should be violated by the dominant matter during the inflation. In this paper the state of matter for the effective Yang-Mills fields is examined, and it is found that the quantum Yang-Mills fields in some particular states can violate the weak energy condition naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Penrose, R. (1965). Phys. Rev. Lett. 14, 57.

    Google Scholar 

  2. Hawking, S. W. and Penrose, R. (1970). Proc. Roy. Soc. Lond. A 314, 529.

    Google Scholar 

  3. Hawking, S. W. (1967). Proc. Roy. Soc. Lond. A 300, 187.

    Google Scholar 

  4. Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge).

    Google Scholar 

  5. Smoot, G. F., et al. (1992). Astrophys. J. 396, L1; de Bernardis, P., et al. (2000). Nature 404, 995; Hanany, S. et al. (2000). Astrophys. J. 545, L5.

    Google Scholar 

  6. Dicke, R. H. (1964). The Theoretical Significance of Experimental Relativity (Blackie, NewYork).

    Google Scholar 

  7. Bennett, C. L., et. al. (1996). Astrophys. J. 464, L1.

    Google Scholar 

  8. Jaffe, A. H., et al. (2001). Phys. Rev. Lett. 86, 3475.

    Google Scholar 

  9. Tegmark, M. and Zaldarriaga, M. (2000). Phys. Rev. Lett. 85, 2240; (2000). Astrophys. J. 544, 30.

  10. Bardeen, J. M., Steinhardt, P., and Turner, M. (1983). Phys. Rev. D 28, 679.

    Google Scholar 

  11. Mukhanov, V. F., Feldman, H. A., and Brandenberger, R. H. (1992). Phys. Rep. 215, 203.

    Google Scholar 

  12. Grishchuk, L. P. (1994). Phys. Rev. D 50, 7154.

    Google Scholar 

  13. Parker, L. and Zhang, Y. (1991). Phys. Rev. D 44, 2421; (1993). Phys. Rev. D 47, 416; (1995). Phys. Rev. D 51, 2703.

    Google Scholar 

  14. Linde, A. (1991). Phys. Lett. B 259, 38; Copeland, E. J., et al. (1994). Phys. Rev. D 49, 6410.

    Google Scholar 

  15. Zhang, Y. (1998). Chin. Phys. Lett. 15, 622; (2000). 17, 76.

    Google Scholar 

  16. Zhang, Y. (1994). Phys. Lett. B 340, 18; (1996). Class. Quantum Grav. 13, 1; (1997). Chin. Phys. Lett. 14, 237.

    Google Scholar 

  17. Pagels, H. and Tomboulis, E. (1978). Nucl. Phys. B 143, 485.

    Google Scholar 

  18. Adler, S. (1981). Phys. Rev. D 23, 2905; (1983). Nucl. Phys. B 217, 3881.

    Google Scholar 

  19. Politzer, H. (1973). Phys. Rev. Lett. 30, 1346; Gross, D. J. andWilzcek, F. (1973). Phys. Rev. Lett. 30, 1343.

    Google Scholar 

  20. Coleman, S. and Weinberg, E. (1973). Phys. Rev. D 7, 1888.

    Google Scholar 

  21. Parker, L. and Raval, A. (1999). Phys. Rev. D 60, 063512.

    Google Scholar 

  22. Adler, S. and Piran, T. (1982). Phys. Lett. B 117, 91; (1984). Rev. Mod. Phys. 56, 1; t'Hooft, G. (1982). Phys. Lett. B 109, 474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. Letter: State of Matter for Effective Yang-Mills Fields and Energy Conditions. General Relativity and Gravitation 34, 2155–2161 (2002). https://doi.org/10.1023/A:1021195720598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021195720598

Navigation