Skip to main content

Advertisement

Log in

Potential Role of Cerebral Glutathione in the Maintenance of Blood-Brain Barrier Integrity in Rat

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Using the model of glutathione (GSH) depletion, possible role of GSH in the maintenance of blood-brain barrier (BBB) integrity was evaluated in rats. Administration (ip) of GSH depletors, diethyl maleate (DEM, 1–4 mmol/kg), phorone (2–3 mmol/kg) and 2-cyclohexene-1-one (CHX, 1 mmol/kg), to male adults was found to deplete brain and liver GSH and increase the BBB permeability to micromolecular tracers (sodium fluorescein and [14C]sucrose) in a dose-dependent manner at 2h. However, BBB permeability to macromolecular tracers such as horseradish peroxidase and Evan's blue remained unaltered. It was also shown that observed BBB permeability dysfunction was associated with brain GSH depletion. A lower magnitude of BBB increase in rat neonates, as compared to adults, indicated a possible bigger role of GSH in the BBB function of mature brain. The treatment with N-acetylcysteine, methionine and GSH provided a partial to full protection against DEM-induced brain (microvessel) GSH depletion and BBB dysfunction; however, the treatment with α-tocopherol, ascorbic acid and turmeric were not effective. Our studies showed that cerebral GSH plays an important role in maintaining the functional BBB integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Meister, A. 1988. Glutathione metabolism and its selective modification. J. Biol. Chem. 263:17205–17208.

    Google Scholar 

  2. Wu, R. M., Murphy, D. L., and Chiueh, C. C. 1994. Protection of nigral neurons against MPP+-induced oxidative injury by deprenyl selegiline U-78517F and DMSO. N. Trends Clin. Neuropharmacol. 8:187–188.

    Google Scholar 

  3. Torres, M. A., Ochoa, E., and Elias, M. M. 1991. Role of lipid peroxidation on renal dysfunction associated with glutathione depletion: effects of vitamin E. Toxicology 70:163–172.

    Google Scholar 

  4. Brightman, M. W. 1989. The anatomic basis of the blood-brain barrier. Pages 53–83, in Neuwelt, E. A. (ed.) Implications of the blood-brain barrier and its manipulation, vol. I, Pelnum Medical Book, New York, NY.

    Google Scholar 

  5. Selmaj, K. 1996. Pathophysiology of the blood-brain barrier. Springer Seminars in Immunopathol. 18:57–73.

    Google Scholar 

  6. Masukawa, T., Sai, H., and Tochino, Y. 1989. Methods for depleting brain glutathione. Life Sci. 44:417–424.

    Google Scholar 

  7. Correira, M. A., Krowech, G., Caldera, M. P., Yei, S. L., Straub, K., and Castagnoli, J. R. N. 1984. Morphine metabolism revisited. II Isolation and chemical characterization of a glutathionyl morphine adduct from rat liver microsome preparation. Chem. Biol. Interact. 51:13–24.

    Google Scholar 

  8. Roy, D., and Snodgrass, W. R. 1988. Phenytoin metabolic activation role of cytochrome P-450 glutathione on age and sex in rats and mice. Res. Commun. Chem. Pathol. Pharmacol. 59:173–190.

    Google Scholar 

  9. Jain, A., Martensson, J., Slole, E., Auld, P. A. M., and Meister, A. 1991. Glutathione deficiency leads to mitochondrial damage in brain. Proc. Natn. Acad. Sci. USA 88:913–917.

    Google Scholar 

  10. Martensson, J., Jain, A., Stole, E., Frayer, W., Auld, P., and Meister, A. 1991. Inhibition of glutathione in the new born rat: a model for endogenously produced oxidative stress. Proc. Natn. Acad. Sci. USA 88:9360–9364.

    Google Scholar 

  11. Shukla, A., Shukla, R., Dikshit, M., and Srimal, R. C. 1993. Alterations in free radical scanvenging mechanisms following blood-brain barrier disruption. Free Radical Biol. Med. 15:97–100.

    Google Scholar 

  12. Hatashita, S., and Hoff, J. T. 1990. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke 21:582–588.

    Google Scholar 

  13. Mun-Bryce, S., and Rosenberg, G. A. 1998. Gelatinase B modulates selective opening of blood-brain barrier during inflammation. Am. J. Physiol. 274:R1203–1211.

    Google Scholar 

  14. Steinman, R. M., and Cohn, Z. A. 1972. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophage in vitro. J. Cell Biol. 55:186–207.

    Google Scholar 

  15. Rapoport, S. I., Fredericks, W. R., Ohono, K., and Pettigrew, K. D. 1980. Quantitative aspects of reversible osmotic opening of blood-brain barrier. Am. J. Physiol. 238:R421–R431.

    Google Scholar 

  16. Tayarani, I., Chaudiere, J., Leufauconnier, J. M., and Bouree, J. M. 1987. Enzymatic protection against peroxidative damage in isolated capillaries. J. Neurochem. 48:1399–1402.

    Google Scholar 

  17. Jollow, D. J., Mitchell, J. R., Zampaglione, N., and Gillete, J. R. 1974. Bromobenzene induced liver necrosis: Protective role of glutathione and evidence for 34-bromobenzene oxide as the hepatotoxic intermediate. Pharmacol. 11:151–169.

    Google Scholar 

  18. Hissin, P. J., and Hilf, R. 1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analyt. Chem. 74:214–226.

    Google Scholar 

  19. Ohkawa, H., Ohishi, N., and Yagi, K. 1979. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Analyt. Biochem. 95:351–358.

    Google Scholar 

  20. Bains, J. S., and Shaw, C. A. 1997. Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 25:335–358.

    Google Scholar 

  21. Lang, C. A., Naryshkin, S., Scheider, D. L., Mius, B. J., and Lindeman, R. D. 1992. Low glutathione levels in healthy aging adults. J. Lab. Clin. Med. 120:720–725.

    Google Scholar 

  22. Costa, L. G., and Murphy, S. D. 1986. Effect of diethylmaleate and other glutathione depletors on protein synthesis. Biochem. Pharmacol. 19:3383–3388.

    Google Scholar 

  23. Bien, E., and Witt, M. 1985. Influences of pyrazolones of hepatic glutathione in rats. Archs Toxicol. 8Suppl.:366–369.

    Google Scholar 

  24. Risau, W., and Wolburg, H. 1990. Development of the blood-brain barrier. Trends Neurosci. 13:174–178.

    Google Scholar 

  25. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Ann. Rev. Biochem. 58:79–110.

    Google Scholar 

  26. Meister, A. 1992. Commentary on antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44:1905–1915.

    Google Scholar 

  27. Pryor, W. A. 1986. Oxy-radicals and related species. Their formation lifetime and reaction. Ann. Rev. Physiol. 48:657–667.

    Google Scholar 

  28. Vanella, A., DiGiacomo, C., Sorrenti, V., Russo, A., Costroima, C., Compisi, A., Renisand, M., and Perez, P. J. R. 1993. Free radical scavenger depletion in post-ischemic reperfusion brain damage. Neurochem. Res. 18:1337–1340.

    Google Scholar 

  29. Hall, N. C., Carney, J. M., Plante, O. J., Chang, M., and Butter-field, D. A. 1997. Effect of 2-cyclohexene-1-one induced glutathione diminution on ischemia/ reperfusion induced alterations in the physical state of brain synaptosomal membrane proteins and lipids. Neurosci. 77:283–290.

    Google Scholar 

  30. Toda, S., Miyase, T., Tanizawa, H., and Takino, Y. 1985. Natural antioxidants. III. Antioxidative compounds isolated from rhizome of Curcuma longa L. Chem. Pharmaceutical Bull. Tokyo 33:1725–1728.

    Google Scholar 

  31. Srinivas, L., Shalini, V. K., and Shylaja, M. 1992. Turmerin: A water soluble antioxidant peptide from turmeric Curcumal longa. Arch. Biochem. Biophys. 292:617–623.

    Google Scholar 

  32. Chodosh, S., Baigelman, W., Medici, T. C., and Enslein, K. 1975. Long term home use of acetyl cysteine in chronic bronchitis. Curr. Ther. Res. 17:319–334.

    Google Scholar 

  33. Reed, D. J., and Orrenius, S. 1977. The role of methionine in glutathione biosynthesis. Biochem. biophys. Res. Commun. 77:1257–1264.

    Google Scholar 

  34. Williamson, J. M., and Meister, A. 1982. Effect of sulfhydryl group modification on the activities of 5-oxo-L-prolinase. J. Biol. Chem. 257:9167–9169.

    Google Scholar 

  35. Vina, J., Penez, C., Furukawa, T., Palacin, M., and Vina, J. R. 1989. Effect of oral glutathione on hepatic glutathione levels in rats and mice. Br. J. Nutr. 62:683–691.

    Google Scholar 

  36. Meister, A. 1991. Glutathione deficiency produced by inhibition of its synthesis and its reversal application in research and therapy. Pharmacol. Ther. 55:155–194.

    Google Scholar 

  37. Kannan, R., Kuhlenkamp, J. F., Jeandider, E., Triuh, H., Ookntens, M., and Kaplowitz, N. 1990. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J. Clin. Invest. 85:2009–2013.

    Google Scholar 

  38. Kannan, R., Yi, J. R., Tang, D., Li, Y., Zlokovic, B. V., and Kaplowitz, N. 1996. Evidence of the existence of sodium-dependent glutathione GSH transporter. Expression of bovine capillary mRNA and size fractions in Xenopus laevis oocytes and dissociation from γ-glutamyl transpeptidase and facilitative transporters. J. Biol. Chem. 271:9754–9758.

    Google Scholar 

  39. Casini, A. F., Maellaro, E., Pompella, A., Ferrali, M., and Comporti, M. 1987. Lipid peroxidation protein thiols and calcium homeostasis in bromobenzene-induced liver damage. Biochem. Pharmacol. 36:3689–3695.

    Google Scholar 

  40. Shi, F., Cavitt, J., and Audus, K. L. 1995. 21-aminosteroid and 2-aminomethyl chromans inhibition of arachnoid acid-induced lipid peroxidation and permeability enhancement in bovine brain microvessel endothelial cell monlayers. Free Radical Biol. Med. 19:349–357.

    Google Scholar 

  41. Smith, S. L., Scherch, H. M., and Hall, E. D. 1996. Protective effects of tirilazad mesylate and metabolite U-89678 against blood-brain barrier damage after subarachnoid hemorrage and lipid peroxidative neuronal injury. J. Neurosurg. 84:229–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girja S. Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R., Shukla, G.S. Potential Role of Cerebral Glutathione in the Maintenance of Blood-Brain Barrier Integrity in Rat. Neurochem Res 24, 1507–1514 (1999). https://doi.org/10.1023/A:1021191729865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021191729865

Navigation