Skip to main content
Log in

Aqueous Ammonia Vapor-Liquid Equilibria– Entropy and Temperature Dependence of Wilson Coefficients

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This study extends a model for nonideal solution behavior by considering the temperature dependence of the coefficients in the Wilson equation for the aqueous ammonia system. Twenty-seven isothermal sets of experimental PXY data up to 2 MPa (20 atm) pressure (284 points) were analyzed using an objective function based on the excess Gibbs free energy to determine the pair of Wilson coefficients for each data set. Evaluation of these results supports the interpretation of the interaction parameters in Wilson's equation as temperature-dependent entropy functions. Comparison of computed results is made with four categories of vapor–liquid equilibrium (VLE) data: (1) primary PTXY, (2) refined PTXY, (3) secondary PTXY or PTM, and (4) partial. Excellent agreement is found with computed results for all but two of these VLE data sets in the region of rapidly changing vapor composition up to 90 mole % of ammonia. A comparison is also made to the only three previously published single-temperature (isothermal) pairs of Wilson coefficients with better agreement in Y, for all three cases, and in P, for two cases. A straightforward procedure is outlined to estimate any set of PTXY values (in the range P < 2 MPa, Y < 0.9) for the aqueous ammonia system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Mattu, G. W. Small, R. J. Combs, R. B. Knapp, and R. T. Kroutil, Appl. Spectrosc. 54, 341(2000).

    Google Scholar 

  2. E. P. Perman, J. Chem. Soc. (London) 79, 718(1901)

    Google Scholar 

  3. E. P. Perman, J. Chem. Soc. (London) 83, 1168(1903).

    Google Scholar 

  4. T. A. Wilson, The Total and Partial Vapor Pressures of Aqueous Ammonia, Bulletin 146 (Engineering Experiment Station, University of Illinois, Urbana, 1925).

    Google Scholar 

  5. I. L. Clifford and E. Hunter, J. Phys. Chem. 37, 101(1933).

    Google Scholar 

  6. S. S. H. Rizvi and R. A. Heidemann, J. Chem. Eng. Data 32, 183(1987).

    Google Scholar 

  7. H. Inomata, N. Ikawa, K. Arai, and S. Saito, J. Chem. Eng. Data 33, 26(1988).

    Google Scholar 

  8. G. Muller, E. Bender, and G. Maurer, Ber. Bunsen-Ges. Phys. Chem. 92, 148(1988).

    Google Scholar 

  9. F. Kurz, Dissertation (Universitat Kaiserslautern, 1994).

  10. F. Harms-Watzenberg, Measurement and Correlation of the Thermodynamic Properties of Water-Ammonia Mixtures, Fortschr.-Ber. VDI 3, No. 380 (VDI, Dusseldorf, 1995).

    Google Scholar 

  11. G. M. Wilson, J. Amer. Chem. Soc. 86, 127(1964).

    Google Scholar 

  12. R. V. Orye and J. M. Prausnitz, Ind. Eng. Chem. 57, 18(1965).

    Google Scholar 

  13. M. Hirata, S. Ohe, and K. Nagahama, Computer Aided Data Book of Vapor-Liquid Equilibria (Kodansha Limited, Elsevier, Tokyo, 1975), pp. 1-12.

    Google Scholar 

  14. J. Gmehling and U. Onken, Vapor-Liquid Equilibrium Data Collection, Vol. I, Part 1 (DECHEMA, Frankfurt/Main, 1977), pp. xi-xliii.

    Google Scholar 

  15. J. W. Hudson and M. Van Winkle, Ind. Eng. Chem. Process Design Develop. 9, 466(1970).

    Google Scholar 

  16. P. E. Field, R. J. Combs, and R. B. Knapp, Appl. Spectrosc. 50, 1307(1996).

    Google Scholar 

  17. D. A. Tassios, AIChE J. 17, 1367(1971).

    Google Scholar 

  18. J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott, Regular and Related Solutions (Van Nostrand Reinhold, New York, 1970), p. 86.

    Google Scholar 

  19. R. Tillner–Roth and D. G. Friend, J. Phys. Chem. Ref. Data 27, 45(1998)

    Google Scholar 

  20. R. Tillner–Roth and D. G. Friend, J. Phys. Chem. Ref. Data 27, 63(1998).

    Google Scholar 

  21. G. Scatchard, L. F. Epstein, J. Warburton, Jr., and P. J. Cody, J. ASRE 53, 413(1947).

    Google Scholar 

  22. National Research Council, International Critical Tables, Vol. III, 1st edu. E. W. Washburn, ed. (McGraw-Hill, New York, 1928), p. 234.

    Google Scholar 

  23. G. S. Kell, J. Chem, Eng. Data 20, 97(1975).

    Google Scholar 

  24. S. Ohe, Computer Aided Data Book of Vapor Pressure (Data Book Publ., Tokyo, 1976), p. 1941.

    Google Scholar 

  25. L. Haar and J. S. Gallagher, NBS/NRC Steam Tables (Hemisphere Publ., Washington, 1984), p. 306.

    Google Scholar 

  26. D. L. Hildenbrand, and W. F. Giauque, J. Amer. Chem. Soc. 75, 2811(1953).

    Google Scholar 

  27. J. Wucherer, Z. Ges. Kalteind. 39, 97(1932).

    Google Scholar 

  28. R. A. Macriss, B. E. Eakin, R. T. Ellington, and J. Huebler, Physical and Thermodynamic Properties of Ammonia-Water Mixtures, Res. Bull. 34 (Inst. of Gas Technology, Chicago, IL (1964), pp. 35-37.

    Google Scholar 

  29. P. C. Gillespie, W. V. Wilding, and G. M. Wilson, AIChE Symp. Ser. 83, 97(1987).

    Google Scholar 

  30. B. S. Neuhausen and W. A. Patrick, J. Phys. Chim. 25, 693(1921).

    Google Scholar 

  31. J. Polak and B. C. Y. Lu, J. Chem. Eng. Data, 20, 182(1975).

    Google Scholar 

  32. T. Sako, T. Hakuta, and H. Yoshitome, J. Chem. Eng. Jpn. 18, 420(1985).

    Google Scholar 

  33. O. M. Morgan and O. Maass, Can. J. Res. 5, 162(1931).

    Google Scholar 

  34. O. A. Hougen, Chem. Met. Eng. 32, 704(1925).

    Google Scholar 

  35. F. E. C. Scheffer and H. J. De Wijs, Rec. Trav. Chim. 44, 655(1925).

    Google Scholar 

  36. O. Sohnel and P. Novotny, Densities of Aqueous Solutions of Inorganic Substances, Physical Sciences Data 22 (Elsevier, New York, 1985), p. 31.

    Google Scholar 

  37. T. J. Edwards, J. Newman, and J. M. Prausnitz, Ind. Eng. Chem. Fund. 17, 264(1978).

    Google Scholar 

  38. J-L. Guillevic, D. Richon, and H. Renon, J. Chem. Eng. Data 30, 332(1985).

    Google Scholar 

  39. T. M. Smolen, D. B. Manley, and B. E. Poling, J. Chem. Eng. Data 36, 202(1991).

    Google Scholar 

  40. R. P. Danner and P. A. Gupte, Fluid Phase Equilibr. 29, 415(1986).

    Google Scholar 

  41. G. M. Wilson, Fluid Phase Equilibr. 116, 1(1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, P.E., Combs, R.J. Aqueous Ammonia Vapor-Liquid Equilibria– Entropy and Temperature Dependence of Wilson Coefficients. Journal of Solution Chemistry 31, 719–742 (2002). https://doi.org/10.1023/A:1021180923982

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021180923982

Navigation