Skip to main content
Log in

Formation Kinetics of Sulfur-Bearing Compounds in Combustion of Hydrocarbon Fuels in Air

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Using an extended kinetic model, formation kinetics of compounds of SOx and HSOy groups is analyzed in the case of combustion of hydrocarbon sulfur-bearing fuels mixed with air. It is shown that formation mechanisms of S-bearing compounds significantly depend on the air-to-fuel ratio and are closely related to formation kinetics of NO, NO2, CO, CO2, H, OH, and HO2. Both in rich and lean mixtures, there is a rather large period of time after ignition with significantly nonequilibrium variation of concentrations of N- and S-bearing components. Key words: combustion, sulfur-bearing compounds, heavy hydrocarbons, nitrogen-bearing components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. C. Brown, R. C. Miake-Lye, C. E. Kolb, et al., "Aircraft exhaust sulfur emissions," Geophys. Res. Lett., 23, No. 24, 3603–3606 (1996).

    Google Scholar 

  2. R. C. Brown, R. C. Miake-Lye, M. R. Anderson, et al., “Aerosol dynamics in near-field aircraft plumes," J. Geophys. Res., 101, No. D17, 22939–22954 (1996).

    Google Scholar 

  3. D. K. Weisenstein, M. K. W. Ko, N. D. Sze, and J. M. Rodriguez, “Potential impact of SO2 emissions from stratospheric aircraft on ozone," Geophys. Res. Lett., 23, No. 1, 161–164 (1996).

    Google Scholar 

  4. R. W. F. Gross and J. F. Bott (eds)., Handbook of Chemical Lasers, John-Wiley and Sons, New York-London-Sydney-Toronto (1976).

    Google Scholar 

  5. V. Ya. Basevich, V. I. Vedeneev, and V. S. Arutyunov, “Modeling of laminar flames of hydrogen sulfide and carbon sulfide," Khim. Fiz., 13, Nos. 8–9, 137–145 (1994).

    Google Scholar 

  6. P. Glarborg, D. Kubel, K. Dam-Johansen, et al., “Impact of SO2 and NO on CO oxidation under post flame conditions," Int. J. Chem. Kinet., 28, 773–790 (1996).

    Google Scholar 

  7. J. E. Johnson and P. Glarborg, “Sulfur chemistry in combustion. I. Sulfur in fuels and combustion chemistry. Pollutants from combustion," in: C. Vovelle (ed.), Formation Mechanisms and Impact on Atmospheric Chemistry, Kluwer Acad. Publ. (2000), P. 283.

  8. B. V. Potapkin, M. I. Strelkova, and A. A. Fridman, “Investigation of kinetic and energy parameters of dissociation of H2S mixed with CO2 in thermal plasma," Khim. Vys. Energ., 26, No. 1, 63–68 (1992).

    Google Scholar 

  9. B. V. Potapkin, V. D. Rusanov, M. I. Strelkova, and A. A. Fridman, “Effect of oxygen additives on dissociation kinetics of carbon sulfide in thermal plasma," Khim. Vys. Énerg., 24, No. 2, 156–161 (1990).

    Google Scholar 

  10. M. U. Alzueta, R. Bilbao, and P. Glarborg, “Inhibition and sensitization of fuel oxidation by SO2," Combust. Flame, 127, No. 4, 2234 (2001).

    Google Scholar 

  11. U. Schumann, J. Strom, R. Busen, et al., “In situ observations of particles in jet aircraft exhausts and contrails for different sulfur containing fuels," J. Geophys. Res., 101, No. D3, 6853–6869 (1996).

    Google Scholar 

  12. B. Karcher, R. Busen, A. Petzold, et al., “Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles. 2. Comparison with observations and sensitivity studies," J. Geophys. Res., 103, No. D17, 17129–17147 (1998).

    Google Scholar 

  13. G. Gleistmann and R. Zellner, “A modelling study of the formation of cloud condensation nuclei in the jet regime of aircraft plumes," J. Geophys. Res., 103, No. D16, 19543–19556 (1998).

    Google Scholar 

  14. A. M. Starik, N. S. Titova, and L. S. Yanovskii, “Analysis of special features of combustion kinetics of products of thermal decomposition of n-octane mixed with air," Teplofiz. Vys. Temp., 37, No. 2, 294–305 (1999).

    Google Scholar 

  15. V. N. Makarov and G. Ya. Gerasimov, “Kinetic model of the medium for formation of combustible nitrogen oxides in a coal-dust flare," Combust. Expl. Shock Waves, 35, No. 2, 133–138 (1999).

    Google Scholar 

  16. A. M. Starik, N. S. Titova, and L. S. Yanovskii, “Special features of oxidation kinetics of the products of thermal decomposition of C3H8 and n-C4H10 mixed with air," Kinet. Katal., 40, No. 1, 11–26 (1999).

    Google Scholar 

  17. J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion," Progr. Energ. Combust. Sci., 15, 287–338 (1989).

    Google Scholar 

  18. I. S. Zaslonko, A. M. Tereza, O. N. Kulish, and D. Yu. Zheldakov, “Kinetic aspects of reduction of the level of nitrogen oxides in combustion products by ammonium additives (De-NO-x)," Khim. Fiz., 11, No. 11, 1491–1517 (1992).

    Google Scholar 

  19. N. G. Dautov and A. M. Starik, “Choosing the kinetic scheme for the description of the methane-air volume reaction," Kinet. Katal., 38, No. 2, 207–230 (1997).

    Google Scholar 

  20. M. V. Kantak, K. S. Manrique, R. H. Aglave, and R. P. Hesketh, “Methylamine oxidation in a flow reactor: Mechanism and modeling," Combust. Flame, 108, Nos. 1/2, 235–265 (1997).

    Google Scholar 

  21. W. Tsang and J. T. Herron, “Chemical kinetic data base for propellant combustion, I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O," J. Phys. Chem. Ref. Data, 20, No. 4, 609–663 (1991).

    Google Scholar 

  22. B. A. Williams and L. Pasternack, “The effect of nitric oxide on premixed flames of CH4, C2H6, C2H4, and C2H2," Combust. Flame, 111, Nos. 1/2, 87–110 (1997).

    Google Scholar 

  23. M. V. Bochkov, L. A. Lovachev, and B. N. Chetverushkin, “Chemical kinetics of NOx formation in methane combustion in air," Mat. Model., 4, No. 9, 3–36 (1992).

    Google Scholar 

  24. O. P. Shatalov, “Physicochemical processes in carbon-sulfide and sulfuric-anhydride vapors at high temperatures," in: G. G. Chernyi and V. A. Levin (eds.), Nonequilibrium Gas Flows with Physicochemical Transformations [in Russian], Izd. Mosk. Gos. Univ., Moscow (1980), pp. 39–60.

    Google Scholar 

  25. F. Yin, D. Grosjean, and J. N. Seinfeld, “Analysis of atmospheric photooxidation mechanism for organosulfur compounds," J. Geophys. Res., 91, No. D13, 14417–14438 (1986).

    Google Scholar 

  26. S. P. Lucachko, I. A. Waitz, R. C. Miake-Lye, et al., “Production of sulfate aerosol precursors in the turbine and exhaust nozzle of an aircraft engine," J. Geophys. Res., 103, No. D13, 16159–16174 (1998).

    Google Scholar 

  27. R. Atkinson, D. L. Baulch, R. A. Cox, et al., “Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV," J. Phys. Chem. Ref. Data, 21, No. 6, 1125–1568 (1992).

    Google Scholar 

  28. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances: Handbook [in Russian], Izd. Akad. Nauk SSSR, Moscow (1978).

    Google Scholar 

  29. R. J. Kee, F. M. Ruplcy, and J. A. Miller, “Chemkin II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics," Report No. 89–8009B, Sandia National Laboratories (1989).

  30. A. Levy and E. L. Merryman, “The microstructure of hydrogen sulphide flames," Combust. Flame, 9, No. 3, 229–240 (1965).

    Google Scholar 

  31. A. M. Savel'ev, A. M. Starik, and N. S. Titova, “Investigation of formation dynamics of ecologically hazardous gases in elements of a gas-turbine engine," Teplofiz. Vys. Temp., 37, No. 3, 495–503 (1999).

    Google Scholar 

  32. R. C. Brown, R. C. Miake-Lye, M. R. Anderson, and C. E. Kolb, “Effect of aircraft exhaust sulfur emission on near field plume aerosols," Geophys. Res. Lett., 23, No. 24, 3607–3610 (1996).

    Google Scholar 

  33. A. M. Savel'ev and A. M. Starik, “Formation dynamics of sulfate aerosols in jet engine plumes," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 108–117 (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savel'ev, A.M., Starik, A.M. & Titova, N.S. Formation Kinetics of Sulfur-Bearing Compounds in Combustion of Hydrocarbon Fuels in Air. Combustion, Explosion, and Shock Waves 38, 609–621 (2002). https://doi.org/10.1023/A:1021175808075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021175808075

Keywords

Navigation