Journal of Insect Behavior

, Volume 15, Issue 6, pp 791–809 | Cite as

Untangling the Tangle-Web: Web Construction Behavior of the Comb-Footed Spider Steatoda triangulosa and Comments on Phylogenetic Implications (Araneae: Theridiidae)

  • Suresh P. BenjaminEmail author
  • Samuel Zschokke


Theridiidae typically construct a three-dimensional web often described as “irregular.” The web consists of a supporting structure and lines under tension termed gumfooted lines. We used automated methods to observe web construction in the theridiid Steatoda triangulosa under laboratory conditions. Web construction lasted several nights. After orientation, spiders built a three-dimensional structure of several threads radiating sideways and downward from the retreat. To build gumfooted lines, they started from the retreat, moved along a structural thread, then dropped down to attach the thread to the lower substrate. On returning, they coated the lowest part of the thread with viscid silk before moving up along the same thread back to the structural thread. They then continued moving along the same structural thread to drop down again to build the next gumfooted line. This behavior was continued until the spiders had built a series of gumfooted lines (a bout). There were regular intervals between the construction of two bouts. Thus, a single web included many bouts built in different stages. We show that gumfooted lines are not homologues to sticky web elements of orb-weavers and present new synapomorphic characters that support the monophyly of Theridiidae + Nesticidae and the monophyly of araneoid sheet web weavers. Further, the time allocation pattern for different behavioral stages and the fine structure of a gumfooted line are presented.

web construction behavioral patterns capture thread viscid silk phylogeny Steatoda Theridiidae theridioids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benjamin, S. P., and Zschokke, S. (2002a). A computerised method to observe spider web construction behaviour in a semi-natural light environment. In Toft, S., and Scharff, N. (eds.), European Arachnology 2000, Aarhus University Press, Aarhus, pp. 117–122.Google Scholar
  2. Benjamin, S. P., and Zschokke, S. (2002b). Webs of theridiid spiders—Construction, structure and evolution. Biol. J. Linn. Soc. (in press).Google Scholar
  3. Benjamin, S. P., Düggelin, M., and Zschokke, S. (2002). Fine structure of sheet-webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall), with remarks on the presence of viscid silk. Acta Zool. 83: 49–59.Google Scholar
  4. Coddington, J. A. (1986a). The genera of the spider family Theridiosomatidae. Smithson. Contrib. Zool. 496: 1–96.Google Scholar
  5. Coddington, J. A. (1986b). The monophyletic origin of the orb web. In Shear, W. A. (ed.), Spiders—Webs, Behavior, and Evolution, Stanford University Press, Stanford,CA, pp. 319–363.Google Scholar
  6. Coddington, J. A. (1986c). Orb webs in non orb weaving ogre-faced spiders (Araneae: Dinopidae): A question of genealogy. Cladistics 2: 53–67.Google Scholar
  7. Coddington, J. A. (1989). Spinneret silk morphology: Evidence for the monophyly of orbweaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae plus Nesticidae. J. Arachnol. 17: 71–95.Google Scholar
  8. Coddington, J. A., and Valerio, C. E. (1980). Observations on the web and behavior of Wendilgarda spiders (Araneae: Theridiosomatidae). Psyche 87: 93–105.Google Scholar
  9. Comstock, J. H. (1940). The Spider Book, Comstock, Ithaca, NY.Google Scholar
  10. Eberhard, W. G. (1972). Observations on the biology of Achaearanea tesselata (Araneae: Theridiidae). Psyche 78: 209–212.Google Scholar
  11. Eberhard, W. G. (1975). The 'inverted ladder' orb web of Scoloderus sp. and the intermediate orb of Eustala sp. (Araneae, Araneidae). J. Nat. Hist. 9: 93–106.Google Scholar
  12. Eberhard, W. G. (1977). 'Rectangular orb' webs of Synotaxus (Araneae: Theridiidae). J. Nat. Hist. 11: 501–507.Google Scholar
  13. Eberhard, W. G. (1979). Argyrodes attenuatus (Theridiidae): A web that is not a snare. Psyche 86: 407–413.Google Scholar
  14. Eberhard, W. G. (1981a). Construction behaviour and the distribution of tensions in orb webs. Bull. Br. Arachnol. Soc. 5: 189–204.Google Scholar
  15. Eberhard, W. G. (1981b). The single line web of Phorocidia studo Levi (Araneae: Theridiidae): A prey attractant? J. Arachnol. 9: 229–232.Google Scholar
  16. Eberhard, W. G. (1982). Behavioral characters for the higher classification of orb-weaving spiders. Evolution 36: 1067–1095.Google Scholar
  17. Eberhard, W. G. (1987). Web-construction behavior of anapid, symphyotognathid and mysmenid spiders (Araneae). J. Arachnol. 14: 339–356.Google Scholar
  18. Eberhard, W. G. (1989).Niche expansion in the spider Wendilgarda galapagoensis (Araneae, Theridiosomatidae) on Cocos Island. Rev. Biol. Trop. 37: 163–168.Google Scholar
  19. Eberhard, W. G. (1990a). Early stages of orb construction by Philoponella vicina, Leucauge mariana, and Nephila clavipes (Araneae, Uloboridae and Tetragnathidae), and their phylogenetic implications. J. Arachnol. 18: 205–234.Google Scholar
  20. Eberhard, W. G. (1990b). Function and phylogeny of spider webs. Annu. Rev. Ecol. Syst. 21: 341–372.Google Scholar
  21. Eberhard, W.G. (1992).Web construction by Modisimus sp. (Araneae, Pholcidae). J. Arachnol. 20: 25–34.Google Scholar
  22. Eberhard, W. G. (1995). The web and construction behavior of Synotaxus ecuadoriensis (Araneae, Synotaxidae). J. Arachnol. 23: 25–30.Google Scholar
  23. Eberhard, W. G. (2001). Trolling for water striders: Active searching for prey and the evolution of reduced webs in the spiderWendilgarda sp. (Araneae, Theridiosomatidae). J. Nat. Hist. 35: 229–251.Google Scholar
  24. Forster, R. R., Platnick, N. I., and Coddington, J. A. (1990).Aproposal and review of the spider family synotaxidae (Araneae, Araneoidea), with notes on theridiid interrelationships. Bull. Am. Mus. Nat. Hist. 193: 1–193.Google Scholar
  25. Freisling, J. (1961). Netz und Netzbauinstinkte bei Theridium saxatile Koch. Z.Wiss. Zool. 165: 396–421.Google Scholar
  26. Griswold, C. (1997). Scharffia, a remarkable new genus of spiders from East Africa (Araneae, Cyatholipidae). J. Arachnol. 25: 269–287.Google Scholar
  27. Griswold, C. E., Coddington, J. A., Hormiga, G. and Scharff, N. (1998). Phylogeny of the orb-web construction spiders (Araneae, Orbiculariae: Deinopoidae, Araneoidae). Zool. J. Linn. Soc. 123: 1–99.Google Scholar
  28. Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.Google Scholar
  29. Hopfmann, W. (1935). Bau und Leistung des Spinnapparates einiger Netzspinnen. Jena. Z. Naturw. 70: 65–112.Google Scholar
  30. Hormiga, G. (1994).Arevision and cladistic analysis of the spider family Pimoidae (Aranoidea, Araneae). Smithson. Contrib. Zool. 549: 1–104.Google Scholar
  31. Hormiga, G., Eberhard, W. G., and Coddington, J. A. (1995). Web-construction behaviour in Australian Phonognatha and the phylogeny of nephiline and tetragnathid spiders (Araneae: Tetragnathidae). Aust. J. Zool. 43: 313–364.Google Scholar
  32. Kloeden, C. (1996). Rotater 3.5 for Macintosh, University of Adelaide, Adelaide. Steatoda Web Construction Behavior 809 Google Scholar
  33. Kovoor, J., and Lopez, A. (1982). Anatomie et histologie des glandes séricigènes des Cyrtophora (Araneae, Araneidae): Affinites et corrélations avec la structure et la composition de la toile. Rev. Arachnol. 4: 1–21.Google Scholar
  34. Kullmann, E. (1960). Beobachtungen an Theridium tepidariorum C. L. Koch als Mitbewohner von Cyrtophora-Netzen. Deuts. Ent. Z. 7: 146–163.Google Scholar
  35. Lamoral, B. H. (1968). On the nest and web structure of Latrodectus in South Africa, and some observations on body colouration of Latrodectus geometricus (Araneae,Theridiidae). Ann. Natal. Mus. 20: 1–14.Google Scholar
  36. Levi, H. W., and Levi, L. R. (1962). The genera of the spider family Theridiidae. Bull. Mus. Comp. Zool. 127: 1–71.Google Scholar
  37. Marples, B. J. (1955). A new type of web spun by spiders of the genus Ulesanis, with the description of two new species. Proc. Zool. Soc. Lond. 125: 751–760.Google Scholar
  38. McCook, H. C. (1889). American Spiders and their Spinningwork I, Academy of Natural Sciences of Philadelphia, Philadelphia. Nielsen, E. (1932). The Biology of Spiders, Levin and Munksgaard, Copenhagen.Google Scholar
  39. Peters, H. M. (1955). Űber den Spinnapparat von Nephila madagascariensis (Radnetzspinnen; Fam. Argiopidae). Z. Naturforsch. (C) 106: 395–464.Google Scholar
  40. Peters, H. M. (1990). On the structure and glandular origin of bridging lines used by spider for moving to distant places. Acta. Zool. Fenn. 190: 309–314.Google Scholar
  41. Platnick, N. (2002). The World Spiders Catalog, Version 3.0 [online catalog], Merrett P., and Cameron H. D. (eds.), American Museum of Natural History, New York ( Scholar
  42. Roberts, M. J. (1995). Spiders of Britain and Northern Europe, Collins Field Guide, London.Google Scholar
  43. SAS Institute (1998). Statview, SAS Institute, Cary, NC. Scharff, N., and Coddington, J. A. (1997). A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zool. J. Linn. Soc. 120: 355- 434.Google Scholar
  44. Sekiguchi, K. (1952). On a new spinning gland found in geometric spiders and its function. Annot. Zool. Jpn. 25: 394–399.Google Scholar
  45. Shear, W. A. (1986). The evolution of web-construction behavior in spiders: A third generation of hypotheses. In Shear, W. A. (ed.), Spiders—Webs, Behavior, and Evolution, Stanford University Press, Standford, CA, M pp. 364–400.Google Scholar
  46. Shinkai, A., and Shinkai, E. (1997). The web structure and the predatory behavior of Wendilgarda sp. (Araneae: Theridiosomatidae). Acta arachnol. 46: 53–60.Google Scholar
  47. Szlep, R. (1965). The web-spinning process and web-structure of Latrodectus tredecimguttatus, L. pallidus and L. revivensis. Proc. Zool. Soc. Lond. 145: 75–89.Google Scholar
  48. Szlep, R. (1966). The web structure of Latrodectus variolus Walckener and L. bishopi Kaston. Israel J. Zool. 15: 89–94.Google Scholar
  49. Vollrath, F. (1988). Untangling the spider's web. Trends Ecol. Evol. 3: 331–335.Google Scholar
  50. Wiehle, H. (1927). Beiträge zurKenntnis des Radentzbaues der Epeiriden, Tetragnathiden und Uloboriden. Z. Morph. Ökol. Tiere 8: 468–537.Google Scholar
  51. Wiehle, H. (1931). Neue Beiträge zur Kenntnis des Fanggewebes der Spinnen aus den Familien Argiopidae, Uloboridae und Theridiidae. Z. Morph. Ökol. Tiere 22: 349–400.Google Scholar
  52. Zschokke, S. (1994).Web Construction Behaviour of the OrbWeaving Spider Araneus diadematus Cl., Ph.D. thesis, Universität Basel, Basel ( Scholar
  53. Zschokke, S. (1996). Early stages of orb web construction in Araneus diadematus Clerck. Rev. Suisse Zool. H.S. 2: 709–720.Google Scholar
  54. Zschokke, S. (1999). Nomenclature of the orb-web. J. Arachnol. 27: 542–546.Google Scholar
  55. Zschokke, S. (2000). Radius construction and structure in the orb-web of Zilla diodia (Araneidae). J. Comp. Physiol. A 186: 999–1005.Google Scholar
  56. Zschokke, S., and Vollrath, F. (1995a). Unfreezing the behaviour of two orb spiders. Physiol. Behav. 58: 1167–1173.Google Scholar
  57. Zschokke, S., and Vollrath, F. (1995b). Web construction patterns in a range of orb-weaving spiders (Araneae). Eur. J. Entomol. 92: 523–541.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of Integrative Biology, Section of Conservation BiologyUniversity of BaselBaselSwitzerland
  2. 2.Department of ZoologyOxfordEngland

Personalised recommendations