Advertisement

International Journal of Theoretical Physics

, Volume 41, Issue 11, pp 2073–2090 | Cite as

Black Holes in Bose–Einstein Condensates

  • L. J. Garay
Article

Abstract

It is shown that there exist both dynamically stable and unstable dilute-gas Bose–Einstein condensates that, in the hydrodynamic limit, exhibit a behavior completely analogous to that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models. We have also simulated the creation of a stable sonic black hole by solving the Gross–Pitaevskii equation numerically for a condensate subject to a trapping potential that is adiabatically deformed. A sonic black hole could in this way be created experimentally with state-of-the-art or planned technology.

Bose–Einstein condensation gravity analogs black holes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198.Google Scholar
  2. Andrews, M. R., Townsend, C. G., Miesner, H.-J., Durfee, D. S., Kurn, D. M., and Ketterle W. (1997). Observation of interference between two Bose condensates, Science 275, 637.Google Scholar
  3. Bloch, I., Hänsch, T.W., and Esslinger, T. (1999). An Atom Laser with a cw Output Coupler, Physical Review Letters 82, 3008.Google Scholar
  4. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G. V., and Lewenstein, M. (1999). Dark Solitons in Bose-Einstein Condensates, Physical Review Letters 83, 5198.Google Scholar
  5. Corley, S. (1998). Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach, Physical Review D 57, 6280.Google Scholar
  6. Corley, S. and Jacobson, T. (1999). Black hole lasers, Physical Review D 59, 4011.Google Scholar
  7. Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. (1999). Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics 71, 463.Google Scholar
  8. Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. (1995). Bose-Einstein Condensation in a Gas of Sodium Atoms, Physical Review Letters 75, 3969.Google Scholar
  9. Deng, L., Hagley, E.W., Wen, J., Trippenbach, M., Band, Y., Julienne, P. S., Simsarian J. E., Helmerson, K., Rolston, S. L., Phillips, W. D. (1999). Four-wave mixing with matter waves, Nature (London) 398, 218.Google Scholar
  10. Dum, R., Cirac, J. I., Lewenstein, M., and Zoller, P. (1998). Creation of Dark Solitons and Vortices in Bose-Einstein Condensates, Physical Review Letters 80, 2972.Google Scholar
  11. Fedichev, P. O. and Shlyapnikov, G. V. (1999). Dissipative dynamics of a vortex state in a trapped Bose-condensed gas, Physical Review A 60, R1779.Google Scholar
  12. Fulling, S. A. (1989). Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, Cambridge.Google Scholar
  13. Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2000). Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, Physical Review Letters 85, 4643Google Scholar
  14. Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2001). Sonic black holes in dilute Bose-Einstein condensates, Physical Review A 63, 023611.Google Scholar
  15. Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (unpublished). Unpublished manuscript.Google Scholar
  16. Hagley, E. W., Deng, L., Kozuma, M., Wen, J., Helmerson, K., Rolston, S. L., and Philips, W. D. (1999). A Well-Collimated Quasi-Continuous Atom Laser, Science 283, 1706.Google Scholar
  17. Hawking, S. W. (1974). Black holes explosions? Nature (London) 248, 30.Google Scholar
  18. Hawking, S.W. (1975). Particle creation by black hole, Communications in Mathematical Physics 43, 199.Google Scholar
  19. Jacobson, T. (1991). Black-hole evaporation and ultrashort distances, Physical Review D 44, 1731.Google Scholar
  20. Jacobson, T. (1999). Trans-Planckian redshifts and the substance of the space-time river, Progress of Theoretical Physics 136(Suppl.), 1.Google Scholar
  21. Jacobson, T. A. and Volovik, G. E. (1998). Event horizons and ergoregions in 3He, Physical Review D 58, 4021.Google Scholar
  22. Kang, G. (1996). Preprint hep-th/9603166. unpublished manuscript. See for a concise pedagogical illustration, and references therein.Google Scholar
  23. Leonhardt, U. and Piwnicki, P. (1999). Optics of nonuniformly moving media, Physical Review A 60, 4301.Google Scholar
  24. Leonhardt, U. and Piwnicki, P. (2000). Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity, Physical Review Letters 84, 822.Google Scholar
  25. Liberati, S., Sonego, S., and Visser, M. (2000). Unexpectedly large surface gravities for acoustic horizons? Classical Quantum Gravity 17, 2903.Google Scholar
  26. Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E., and Cornell, E. A. (1999). Vortices in a Bose-Einstein Condensate, Physical Review Letters 83, 2498.Google Scholar
  27. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.Google Scholar
  28. Reznik, B. (1997). Preprint gr-qc/9703076. Unpublished manuscript.Google Scholar
  29. Ruutu, V. M., Eltsov, V. B., Gill, A., Kibble, T.W., Krusius, M., Makhlin, Yu. G., Placais, B., Volovik, G. E., Wen, Xu. (1996). Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation, Nature (London) 382, 334.Google Scholar
  30. Schroer, B. and Swieca, J. A. (1970). Indefinite Metric and Stationary external Interactions of Quantized Fields, Physical Review D 2, 2938.Google Scholar
  31. Unruh, W. G. (1981). Experimental Black-Hole Evaporation? Physical Review Letters 46, 1351.Google Scholar
  32. Unruh, W. G. (1995). Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Physical Review D 51, 2827.Google Scholar
  33. Visser, M. (1998a). Hawking Radiation without Black Hole Entropy, Physical Review Letters 80, 3436.Google Scholar
  34. Visser, M. (1998b). Acoustic black holes: horizons, ergospheres, and Hawking radiation, Classical Quantum Gravity 15, 1767.Google Scholar
  35. Visser, M. (1993). Preprint gr-qc/9311028. Unpublished manuscript.Google Scholar
  36. Volovik, G. E. (1999a). Simulation of Painleve-Gullstrand black hole in thin 3He A film, Pis'mav Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 69, 662.Google Scholar
  37. Volovik, G. E. (1999b). Simulation of Painleve-Gullstrand black hole in thin 3He A film, JETP Letters 69, 705.Google Scholar
  38. Williams, J. and Holland, M. (1999). Preparing topological states of a Bose-Einstein condensate, Nature (London) 401, 568.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • L. J. Garay
    • 1
  1. 1.Instituto de Matemáticas y Física Fundamental, CSICMadridSpain

Personalised recommendations