Skip to main content
Log in

Two-Dimensional Nanocomposites: Photonic Crystals and Nanomembranes (Review). Part 2. Properties and Applications

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The physical properties and promising applications of two-dimensional (2D) nanocomposites (photonic crystals and nanomembranes) are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Pokropivnyi, “Two-dimensional nanocomposites: Photonic crystals and nanomembranes (Review). I. Types and preparation,” Poroshk. Metall., Nos. 3–4, 45–54 (2002).

  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, 386, 143–149 (1997).

    Google Scholar 

  3. R. Meade, K. Brommer, A. Rappe, and J. Yoannopoulos, “Nature of photonic band gap: some insights from a field analysis,” J. Opt. Soc. Amer. B, 10, 328–332 (1993).

    Google Scholar 

  4. P. Etchegoin and R. T. Phillips, “Photon focusing, internal diffraction, and surface states in periodic dielectric structures,” Phys. Rev. B, 53, No. 19, 12674–12683 (1999).

    Google Scholar 

  5. J. B. Pendry, “Photonic band structures,” J. Mod. Opt., 41, 209–229 (1994).

    Google Scholar 

  6. M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulas, “Theoretical investigation of off-plane propagation of electromagnetic waves in two-dimensional photonic crystals,” Phys. Rev. B, 58, No. 11, 6791–6794 (1998).

    Google Scholar 

  7. F. J. Garcia-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B, 58, No. 11, 6783–6786 (1998).

    Google Scholar 

  8. C. S. Huang, M. F. Lin, and D. S. Chuu, “Elementary excitation in cylinder bundless,” J. Phys. Soc. Japan, 67, No. 7, 2522–2528 (1998).

    Google Scholar 

  9. F. L. Schyu, M. F. Lin, and Y. T. Lu, “Electronic excitations in cylinder superlattices,” J. Phys. Soc. Japan, 68, No. 10, 3352–3359 (1999).

    Google Scholar 

  10. F. Parage, M. M. Doria, and O. Buisson, “Plasma modes in periodic two-dimensional superconducting-wire networks,” Phys. Rev. B, 58, No. 14, R8291–R8294 (1998).

    Google Scholar 

  11. S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure photonic crystal. A computational study,” Appl. Phys. Lett., 75, No. 22, 3461–3463 (1999).

    Google Scholar 

  12. G. W. Bryant, E. L. Shirley, L. S. Goldner, et al., “Theory of probing of photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B, 58, No. 4, 2131–2141 (1998).

    Google Scholar 

  13. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, et al., “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B, 57, No. 16, 9485–9497 (1998).

    Google Scholar 

  14. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, et al., “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B, 60, No. 24, 17136–17149 (1999).

    Google Scholar 

  15. X. Wan, J. Dong, and D. Y. Xing, “Optical properties of carbon nanotubes,” Phys. Rev. B, 58, No. 11, 6756–6759 (1998).

    Google Scholar 

  16. J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al., “Photonic-bandgap microcavities in optical waveguides,” Nature, 390, 143–1435 (1997).

    Google Scholar 

  17. A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B, 58, No. 8, 4809–4817 (1998).

    Google Scholar 

  18. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., 58, No. 20, 2059–2062 (1987).

    Google Scholar 

  19. T. Nishikawa, H. Nakano, N. Uesugi, et al., “Greatly enhanced soft x-ray generation from femtosecond-laser produced plasma by using a nanohole-alumina target,” Appl. Phys. Lett., 75, No. 26, 4079–4081 (1999).

    Google Scholar 

  20. S. Tanaka and S. Tamura, “Acoustic stop bands of surface and bulk modes in two-dimensional photonic lattices consisting of aluminum and polymer,” Phys. Rev. B, 60, No. 19, 13294–13297 (1999).

    Google Scholar 

  21. H. Kosaka, T. Kawashima, A. Tomita, et al., “Superprism phenomena in photonic crytstals,” Phys. Rev. B, 58, No. 16, R10096–R10099 (1998).

    Google Scholar 

  22. V. G. Veselago, “Electrodynamics of materials with simultaneously negative values of e and µ,” Usp. Fiz. Nauk., 92, No. 3, 517–526 (1967).

    Google Scholar 

  23. B. Reulet, A. Yu. Kasumov, M. Kosiac, et al., “Acoustoelectric effects in carbon nanotubes,” Phys. Rev. Lett., 85, No. 13, 2829–2832 (2000).

    Google Scholar 

  24. M. Kosiak, A. Yu. Kasumov, S. Gueron, et al., “Superconductivity in ropes of single-walled carbon nanotubes,” Phys. Rev. Lett., 86, No. 11, 2416–2419 (2001).

    Google Scholar 

  25. V. V. Pokropivny, “Room-Tc superconductivity on whispering mode in quasi-1Dcomposite of superconducting nanotubes: is it possible?” J. Supercond., 13, No. 4, 607–612 (2000).

    Google Scholar 

  26. M. S. Dresselhaus and P. C. Eklund, “Phonons in carbon nanotubes,” Advan. Phys., 49, No. 6, 705–814 (2000).

    Google Scholar 

  27. E. M. Purcell, Phys. Rev., 69, 681 (1946).

    Google Scholar 

  28. J. L. Jewell, J. P. Harbison, A. Scherer, et al., IEEE J. Quantum Electron., 27, 1332 (1991).

    Google Scholar 

  29. S. Noda, “Two-and three-dimensional photonic crystals in III-V semiconductors,” MRS Bulletin, 26, No. 8, 618–621 (2001).

    Google Scholar 

  30. O. Painter, R. K. Lee, A. Scherer, et al., “Two-dimensional photonic band-gap defect mode laser,” Science, 284, 1819–1821 (1999).

    Google Scholar 

  31. H. Masuda, K. Nishio, and N. Baba, “Fabrication of a one-dimensional microhole array by anodic oxidation of aluminum,” Appl. Phys. Lett., 63, No. 23, 3155–3177 (1993).

    Google Scholar 

  32. P. W. Evans, J. J. Wierer, and J. J. Holonyak, Jr., “Photopumped laser operation of an oxide post GaAs-AlAs superlattice photonic lattice,” Appl. Phys. Lett., 70, No.9, 1119–1121 (1997).

    Google Scholar 

  33. M. Meier, A. Mekis, A. Dodabalapur, et al., “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett., 74, No. 1, 7–9 (1999).

    Google Scholar 

  34. U. Vietze, O. Krauss, F. Laeri, et al., “Zeolite-dye microlasers,” Phys. Rev. Lett., 81, No. 2, 4628–4631 (1998).

    Google Scholar 

  35. P. Halevi, A. A. Krokhin, and J. Arriaga, “Photonic crystals as optical components,” Appl. Phys. Lett., 75, No. 18, 2725–2727 (1999).

    Google Scholar 

  36. G. Parker and M. Charlton, “Photonic crystals,” Physics World, 13, No. 8, 29–34 (2000).

    Google Scholar 

  37. J. Li, C. Papadopolous, J. M. Xu, and M. Moskovits, “Highly ordered nanotube arrays for electronics applications,” Appl. Phys. Lett., 75, No. 3, 367–369 (1999).

    Google Scholar 

  38. S. E. Bakrou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Optics. Lett., 24, No. 1, 46–48 (1999).

    Google Scholar 

  39. J. C. Knight, T. A. Birks, B. J. Mangan, and P. St. J. Russel, “Microstructured silica as an optical material,” MRS Bulletin, 26, No. 8, 614–617 (2001).

    Google Scholar 

  40. A. Mekis, “High transmission through sharp bends in photonic crystals waveguides,” Phys. Rev. Lett., 77, 3787–3790 (1996).

    Google Scholar 

  41. P. Halevi, A. A. Krokin, and J. Arriaga, “Photonic crystal optics and homogenization of 2D periodic composites,” Phys. Rev. Lett., 82, No. 4, 719–722 (1999).

    Google Scholar 

  42. P. Vettinger, M. Despont, U. Drechsler, et al., Proc. STM-99 (Seoul, 19–23 July, 1999), Seoul (1999).

  43. V. A. Bykov and V. I. Mishachev, “Possibilities of silicon micromechanics for the development of SPM in nanotechnology,” Zondovaya Mikroskopiya-2000Nizhnii Novgorod, Inst. for the Physics of Microstructures, Russian Academy of Sciences (2000), pp. 292–297.

    Google Scholar 

  44. C. A. Huber, T. E. Huber, M. Sadoqi, et al., “Nanowire array composites,” Science, 236, 800–802 (1994).

    Google Scholar 

  45. Yu. B. Paderno, V. N. Paderno, A. N. Martynenko, and V. B. Phillipov, “Fibrous ductile ceramics based on borides,” Polish Ceramic Bull., 50, No. 12, 115–126 (1996).

    Google Scholar 

  46. Jap. J. Appl. Phys., 39, 2560 (2000).

  47. G. E. Fryxell, J. Lau, and S. Mattigod, “Self-assembled monolayers on mesoporous supports (SAMMS)-an innovative environmental sorbent,” Mat. Tech. Adv. Perf. Mat., 14, No. 4, 183–193 (1999).

    Google Scholar 

  48. R. R. Bhave, Inorganic Membranes: Synthesis, Characterization, and Properties, Van Nostrand-Reinhold, NY (1991).

    Google Scholar 

  49. B. S. Kang and S. H. Hyun, J. Mater. Sci., 34, 1391 (1999).

    Google Scholar 

  50. J. Chen and J. M. Thomas, Chem. Soc. Com., 603 (1994).

  51. J. M. Thomas, R. Raja, G. Sankar, and R. G. Bell, “Molecular sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen,” Nature, 398, 227–230 (1999).

    Google Scholar 

  52. K. B. Jirage, J. C. HuLteen, and C. R. Martin, “Nanotube-based molecular-filtration membranes,” Science, 278, 655–658 (1997).

    Google Scholar 

  53. V. V. Pokropivnyi, A. V. Pokropivnyi, V. V. Skorokhod, and A. V. Kurdyumov, “Fullerenes and fullerites of BN fulborenes and fulborenites,” Dop. Nat. Akad. Sci. Ukraine, No. 4, 112–117 (1999).

    Google Scholar 

  54. P. V. Braun and P. Wiltzius, “Electrochemically grown photonic crystals,” Nature, 402, 603–604 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokropivnyi, V.V. Two-Dimensional Nanocomposites: Photonic Crystals and Nanomembranes (Review). Part 2. Properties and Applications. Powder Metallurgy and Metal Ceramics 41, 369–381 (2002). https://doi.org/10.1023/A:1021165009698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021165009698

Navigation