Skip to main content
Log in

Parenchyma-Stroma Relationships in the Myocardium: Alterative Insufficiency of Cardiomyocytes and Morphogenesis of Focal Cardiosclerosis

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Remodeling of the myocardium during focal metabolic damages to cardiomyocytes is determined by contracture injuries to myofibrils, their lump degradation, and development of coagulation necrosis. Reactive changes in the stroma develop over the first hours and manifest in acute hemodynamic disturbances followed by proliferation of connective tissue cells. The immature granulation tissue is formed at the site of myocardial damages. Later this tissue is replaced by the mature connective tissue with the formation of small scars. It should be emphasized that sclerotic changes during remodeling of the myocardium after focal metabolic damages are reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. M. Nepomnyashchikh, Morphogenesis of General Pathological Processes in the Heart [in Russian], Novosibirsk (1991).

  2. L. M. Nepomnyashchikh, Alterative Insufficiency of Cardiomyocytes in Metabolic and Ischemic Damages [in Russian], Moscow (1998).

  3. L. M. Nepomnyashchikh, Regenerative and Plastic Insufficiency of Cardiomyocytes in Impaired Protein Synthesis [in Russian], Moscow (1998).

  4. Yu. G. Tsellarius and L. A. Semenova, Histopathology of Focal Metabolic Damages to the Myocardium [in Russian], Novosibirsk (1972).

  5. C. C. Chua, R. C. Hamdy, and B. H. L. Chua, Biochim. Biophys. Acta, 1311, 175–180 (1996).

    Google Scholar 

  6. E. E. J. M. Creemers, J. P. M. Cleutjens, J. F. M. Smits, and M. J. A. P. Daemen, Circ. Res., 89, 201–210 (2001).

    Google Scholar 

  7. C. M. Dollery, J. R. McEwan, and A. M. Henney, Ibid., 77, 863–868 (1995).

    Google Scholar 

  8. Y. Y. Li, T. Q. Feng, T. Kadokami, et al., Proc. Natl. Acad. Sci. USA, 97, 12,746–12,751 (2000).

    Google Scholar 

  9. Y. Y. Li, C. F. McTiernan, and A. M. Feldman, Cardiovasc. Res., 46, 214–224 (2000).

    Google Scholar 

  10. L. Lu, Z. Gunja-Smith, J. F. Woessner, et al., Am. J. Physiol. Heart Circ. Physiol., 279, H601–H609 (2000).

    Google Scholar 

  11. F. G. Spinale, Circ. Res., 90, 520–530 (2002).

    Google Scholar 

  12. B. Swynghedauw, Physiol. Rev., 79, 215–262 (1999).

    Google Scholar 

  13. J. R. Teerlink, J. M. Pfeffer, and M. A. Pfeffer, Circ. Res., 75, 105–113 (1994).

    Google Scholar 

  14. R. Vracko and D. Thorning, Lab. Invest., 65, 214–227 (1991).

    Google Scholar 

  15. K. T. Weber, Circulation, 96, 4065–4082 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepomnyashchikh, L.M., Lushnikova, E.L., Semenov, D.E. et al. Parenchyma-Stroma Relationships in the Myocardium: Alterative Insufficiency of Cardiomyocytes and Morphogenesis of Focal Cardiosclerosis. Bulletin of Experimental Biology and Medicine 134, 191–197 (2002). https://doi.org/10.1023/A:1021156803241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021156803241

Navigation