Skip to main content
Log in

Electrodeposition of Ni–Fe Alloys in the Presence of Complexing Agents

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of binary Ni–Fe alloys is studied in chloride-based solutions with organic additives. Specific codeposition composition of the electrolyte and operating variables are taken for deposition a wide range of Ni–Fe deposits. Results reveal that in solutions containing sodium citrate and glycolic acid, the nickel content always increases with the current density and nickel concentration. Therefore, nickel reduction rate and the Ni/Fe ratio in the deposits increase. The anomalous codeposition of iron is minimized and the quality of the alloy deposits is improved with the combination of sodium citrate and glycolic acid. Scanning electron micrographs show that, with addition of glycolic acid, the spherical particles become finer and the surface roughness relatively decreases. The XRD patterns of the Ni–Fe deposits exhibit the fcc structure and (111) preferred orientation for alloys with nickel content exceeding 60 wt %. After a heat treatment, additional peaks appear for an Ni–Fe solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sasaki, K.Y. and Talbot, K.Y., J. Electrochem. Soc., 1998, vol. 145, p. 981.

    Google Scholar 

  2. Kieling, V.C., Surf. Coat. Technol., 1997, vol. 96, p. 135.

    Google Scholar 

  3. Harris, T.M., Wilson, J.L., and Bleakley, M., J. Electrochem. Soc., 1999, vol. 146, p. 1461.

    Google Scholar 

  4. Leith, S.D., Ramli, S., and Schwartz, D.T., J. Electrochem. Soc., 1999, vol. 146, p. 1431.

    Google Scholar 

  5. Osaka, T., Takai, M., and Tachibana, H., US Patent 6063512, 2000.

  6. Harris, T.M. and Wilson, J.L., US Patent 5932082, 1999.

  7. Biallozor, S. and Lieder, M., Surf. Technol., 1984, vol. 21, p. 1.

    Google Scholar 

  8. Gangasingh, D. and Talbot, J.B., J. Electrochem. Soc., 1991, vol. 138, p. 3605.

    Google Scholar 

  9. Krause, T., Arulnayagam, L., and Pritzker, M., J. Electrochem. Soc., 1997, vol. 144, p. 960.

    Google Scholar 

  10. Horkans, J., J. Electrochem. Soc., 1981, vol. 128, p. 45.

    Google Scholar 

  11. Yin, K.M. and Lin, B.T., Surf. Coat. Technol., 1996, vol. 78, p. 205.

    Google Scholar 

  12. Zech, N., Podlaha, E.J., and Landolt, D., J. Electrochem. Soc., 1999, vol. 146, p. 2886.

    Google Scholar 

  13. Yin, K.M., J. Electrochem. Soc., 1997, vol. 144, p. 1560.

    Google Scholar 

  14. Zech, N., Podlaha, E.J., and Landolt, D., J. Electrochem. Soc., 1999, vol. 146, p. 2892.

    Google Scholar 

  15. Sasiki, K.Y. and Talbot, J.B., J. Electrochem. Soc., 2000, vol. 147, p. 189.

    Google Scholar 

  16. Lieder, M. and Biallozor, S., Surf. Technol., 1985, vol. 26, p. 23.

    Google Scholar 

  17. Srimathi, S.N., Mayarma, S.M., and Sheshadri, B.S., Surf. Technol., 1982, vol. 6, p. 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbani, M., Dolati, A.G. & Afshar, A. Electrodeposition of Ni–Fe Alloys in the Presence of Complexing Agents. Russian Journal of Electrochemistry 38, 1173–1177 (2002). https://doi.org/10.1023/A:1021141524584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021141524584

Keywords

Navigation