Skip to main content
Log in

Components of the Intracellular cAMP System Supporting the Olfactory Reception of Amyl Alcohol

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Experiments on isolated frog olfactory epithelium, using vital luminescent microscopy showed that the olfactory transduction of amyl alcohol is mediated by the intracellular cAMP signaling system. Increases in intracellular cAMP levels resulted from activation of adenylate cyclase type III via odorant-induced stimulation of G protein linked to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. V. Avdonin and V. A. Tkachuk, Receptors and Intracellular Calcium [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  2. E. V. Bigdai, V. O. Samoilov, and A. N. Komarov, “Studies of the involvement of the cAMP intracellular signal system in the olfactory transduction of camphors and amyl alcohol,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No. 3, 412–418 (1999).

    Google Scholar 

  3. Yu. A. Vladimirov and G. E. Dobretsov, Fluorescent Probes in Studies of Biological Membranes [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. O. S. Gladysheva, D. M. Kukushkina, V. A. Opritov, G. B. Sadikov, and I. M. Shvets, “ATP in the olfactory organ of the frog,” Tsitologiya, 26, No. 7, 788–793 (1984).

    Google Scholar 

  5. A. V. Minor and N. L. Sakina, “The role of cyclic adenosine-3′,5′-monophosphate in olfactory reception,” Neirofiziologiya, 4, No. 3, 415–422 (1973).

    Google Scholar 

  6. A. V. Minor, “The physiological mechanisms of operation of olfactory receptor cells,” in: Sensory Systems [in Russian], Nauka, Leningrad (1980), pp. 3–18.

    Google Scholar 

  7. I. P. Pavlov, “In Memory of Heidenhain,” in: The Complete Collected Works [in Russian], Academy of Sciences of the USSR, Second Edition (supplemented), Vol. 6, Moscow, Leningrad (1952).

    Google Scholar 

  8. A. F. Poglazov, M. V. Shubin, Yu. G. Skotselyas, V. A. Alimov, and Yu. A. Vladimirov, “Fluorimetric studies of the release of Ca2+ from lysosomes induced by phospholipase,” Biofizika, 20, No. 1, 69–72 (1975).

    Google Scholar 

  9. V. O. Samoilov, “General physiology and cell physiology,” Usp. Fiziol. Nauk., 25, No. 2, 23–28 (1994).

    Google Scholar 

  10. A. V. Skirkyavichus, Z. Yu. Skirkyavichene, V. M. Gavyalis, B. Yu. Yakaitis, and V. T. Balenta, “Electrophysiological studies of the magnitudes of olfactory receptor responses in typographic bark beetles to different concentrations of pheromone mixtures and their separate components,” in: Chemical Signals in Animals [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  11. N. Sperelakis, The Physiology and Pathology of the Heart [in Russian], Meditsina, Moscow (1990), Vol. 2.

    Google Scholar 

  12. G. M. Frank, Biophysics of the Living Cell, Selected Works [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  13. B. W. Ache and A. Zhainazarov, “Dual second-messenger pathways in olfactory transduction,” Curr. Opin. Neurobiol., 5, 461–466 (1995).

    Google Scholar 

  14. H. A. Bakalyar and R. R. Reed, “Identification of a specialized adenylyl cyclase that may mediate odorant detection,” Science, 250, No. 4986, 1403–1406 (1990).

    Google Scholar 

  15. D. Dixon, N. Brandt, and D. H. Haynes, “Chlorotetracycline fluorescence is a quantitative measure of the free internal Ca2+ concentration achieved by active transport. In situ calibration and application to bovine cardiac sarcolemmal vesicles,” J. Biol. Chem., 259, No. 22, 13737–13741 (1984).

    Google Scholar 

  16. S. Enomoto, M. Kashiwayanagy, and K. Kurihara, “Liposomes having high sensitivity to odorants,” Biochem. Biophys Acta, 1062, 7–12 (1991).

    Google Scholar 

  17. S. Firestein, G. M. Shepherd, and F. S. Werblin, “Time course of the membrane current underlying sensory transduction in salamander receptor neurons,” J. Physiol. (London), 430, 135–158 (1990).

    Google Scholar 

  18. S. Firestein, F. Zufall, and G. M. Shepherd, “Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides,” J. Neurosci., 11, No. 11, 3565–3573 (1991).

    Google Scholar 

  19. S. Frings, J. W. Lynch, and B. Lindemann, “Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockade,” J. Gen. Physiol., 100, No. 1, 45–67 (1992).

    Google Scholar 

  20. S. Frings and B. Lindemann, “Odorant responses of isolated olfactory receptor cells are blocked by amiloride,” J. Membr. Biol., 105, No. 3, 244 (1988).

    Google Scholar 

  21. S. Frings and B. Lindemann, “Current recording from sensory cilia of olfactory receptor cells in situ. I. The neuronal response to cyclic nucleotides,” J. Gen. Physiol., 97, No. 1, 1–16 (1991).

    Google Scholar 

  22. S. Frings, S. Benz, and B. Lindemann, “Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+,” J. Gen. Physiol., 97, No. 4, 725–747 (1991).

    Google Scholar 

  23. V. Ganitkevich and G. Isenberg, “Caffeine-induced release and reuptake of Ca2+ by Ca2+-stores in myocytes from guinea-pig urinary bladder,” J. Physiol. (London), 458, 99–117 (1992).

    Google Scholar 

  24. I. C. Griff and R. R. Reed, “The genetics of olfaction,” Curr. Opin. Neurobiol., 5, 456–460 (1995).

    Google Scholar 

  25. M. Hallet, A. S. Schneider, and E. Carbone, “Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts,” J. Membr. Biol., 10, No. 1, 31–44 (1972).

    Google Scholar 

  26. M. Janiguchi, M. Kashiwayanagi, and K. Kurihara, “Enhancement of the turtle olfactory responses to fatty acids by treatment of olfactory epithelium with phosphatidylserine,” Brain Res., 647, 10–14 (1994).

    Google Scholar 

  27. D. T. Jones and R. R. Reed, “An olfactory neuron-specific G-protein involved in odorant signal transduction,” Science, 244, No. 906, 790–795 (1989).

    Google Scholar 

  28. M. Kashiwayanagi and K. Kurihara, “Odor discrimination in single turtle olfactory receptor neuron,” Neurosci. Lett., 170, No. 2, 233–236 (1994).

    Google Scholar 

  29. T. Kurahashi, T. Shibuya, and A. Kaneko, “Cyclic AMP-activated conductance in isolated olfactory receptor cells of the newt,” Jap. J. Physiol., 40, 193 (1990).

    Google Scholar 

  30. T. Kurahashi and K. W. Yau, “Tale of an unusual chloride current,” Curr. Biol., 4, No. 3, 256–258 (1994).

    Google Scholar 

  31. D. Lancet, “Properties of olfactory cilia and cAMP-mediated transduction,” Discuss. Neurosci., 4, No. 3, 68–74 (1987).

    Google Scholar 

  32. J. Lazarovitz, L. Ahaffir, U. Pace, E. Eckstein, J. Heldman, A. Avivi, and D. Lancet, “Olfactory Gs: a novel functionally distinct stimulatory GTP-binding protein,” J. Cell Biol., 109, No. 4, Part 2, 53a (1989).

    Google Scholar 

  33. G. Lowe and G. H. Hold, “Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander,” J. Physiol. (London), 462, 175–196 (1993).

    Google Scholar 

  34. G. Lowe, T. Nakamura, and G. H. Gold, “Adenylate cyclase mediates olfactory transduction for a wide variety of odorants,” Proc. Natl. Acad. Sci. USA, 86, No. 14, 5641–5645 (1989).

    Google Scholar 

  35. B. P. M. Menco and A. I. Farman, “Ultrastructural evidence for multiple mucous domains in frog olfactory epithelium,” Cell Tiss., 270, 47–56 (1992).

    Google Scholar 

  36. A. Menrvse, G. Dodd, and T. M. Poynder, “Evidence for the specific role of cyclic AMP in the olfactory transduction mechanism,” Biochem. Biophys. Res. Commun., 77, No. 6, 672–677 (1977).

    Google Scholar 

  37. T. Nomura and K. Kurihara, “Similarity of ion dependence of odorant responses between lipid bilayer and olfactory system,” Biochem. Biophys Acta, 1005, No. 3, 260–264 (1989).

    Google Scholar 

  38. V. Pace, E. Hanski, Y. Salomon, and D. Lancet, “Odorant-sensitive adenylate cyclase may mediate olfactory reception,” Nature, 316, No. 2, 255–258 (1985).

    Google Scholar 

  39. E. Pleuffer, S. Mollner, D. Lancet, and T. Pleuffer, “Olfactory adenylyl cyclase: identification and purification of a novel enzyme form,” J. Biol. Chem., 264, No. 31, 18803–18807 (1989).

    Google Scholar 

  40. D. Restrepo, T. Miyamoto, B. P. Bryant, and J. H. Teeter, “Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish,” Science, 249, 1166–1168 (1990).

    Google Scholar 

  41. T. Sato, T. Hirono, M. Tenoike, and M. Takebayashy, “Two types of increases in free Ca2+ evoked by odor in isolated frog olfactory receptor neurons,” Bull. Electrotechn. Lab., 55, No. 9, 13–23 (1991).

    Google Scholar 

  42. J. S. K. Sham, “Ca2+ release-induced inactivation of Ca2+ current in rat ventricular myocytes: evidence for local Ca2+ signalling,” J. Physiol. (London), 500, No. 2, 235–295 (1997).

    Google Scholar 

  43. R. S. Winstock, H. N. Wright, A. M. Spiegel, M. A. Levinet, and A. M. Moses, “Olfactory distinction in humans with different guanine nucleotide-binding protein,” Nature, 322, No. 6080, 635–636 (1986).

    Google Scholar 

  44. F. Zufall, S. Firestein, and G. M. Shepherd, “Analysis of single cyclic nucleotide-gated channels in olfactory receptor cells,” J. Neurosci., 11, No. 11, 3573–3580 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigdai, E.V., Samoilov, V.O. Components of the Intracellular cAMP System Supporting the Olfactory Reception of Amyl Alcohol. Neurosci Behav Physiol 33, 89–94 (2003). https://doi.org/10.1023/A:1021139617470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021139617470

Navigation