Skip to main content
Log in

Initial-Boundary Value Problems for Linear and Soliton PDEs

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider evolution PDEs for dispersive waves in both linear and nonlinear integrable cases and formulate the associated initial-boundary value problems in the spectral space. We propose a solution method based on eliminating the unknown boundary values by proper restrictions of the functional space and of the spectral variable complex domain. Illustrative examples include the linear Schrödinger equation on compact and semicompact n-dimensional domains and the nonlinear Schrödinger equation on the semiline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953).

    Google Scholar 

  2. R. Terras and R. Swanson, J. Math. Phys., 21, 2140 (1980).

    Google Scholar 

  3. A. S. Fokas, Proc. Roy. Soc. London A, 53, 1411 (1997).

    Google Scholar 

  4. A. S. Fokas, J. Math. Phys., 41, 4188 (2000).

    Google Scholar 

  5. A. S. Fokas, Proc. Roy. Soc. London A, 457, 371 (2001).

    Google Scholar 

  6. A. S. Fokas and B. Pelloni, Math. Proc. Camb. Phil. Soc., 131, 521 (2001).

    Google Scholar 

  7. B. Pelloni, Theor. Math. Phys., 133, 1598 (2002).

    Google Scholar 

  8. A. Degasperis, S. V. Manakov, and P. M. Santini, “Initial-boundary value problems for linear PDEs: The analyticity approach,” nlin.SI/0210058 (2002).

  9. A. S. Fokas, “Inverse scattering transform on the half line—the nonlinear analogue of the sine transform,” in: Inverse Problems: An Interdisciplinary Study (P. C. Sabatier, ed.), Acad. Press, London (1987), p. 409.

    Google Scholar 

  10. P. C. Sabatier, J. Math. Phys., 41, 414 (2000).

    Google Scholar 

  11. A. S. Fokas, A. R. Its, and L. Y. Sung, “The nonlinear Schrödinger equation on the half-line,” Preprint, Cambridge Univ. Press, Cambridge (2001).

    Google Scholar 

  12. A. S. Fokas, “Integrable nonlinear evolution equations on the half-line (October 2001),” Comm. Math. Phys. (to appear).

  13. A. S. Fokas and A. R. Its, Phys. Rev. Lett., 68, 3117 (1992).

    Google Scholar 

  14. M. J. Ablowitz and H. Segur, J. Math. Phys., 16, 1054 (1975).

    Google Scholar 

  15. A. Degasperis, S. V. Manakov, and P. M. Santini, JETP Letters, 74, 481 (2001).

    Google Scholar 

  16. I. T. Khabibullin, Theor. Math. Phys., 130, 25 (2002).

    Google Scholar 

  17. J. Leon and A. V. Mikhailov, Phys. Lett. A, 253, 33 (1999).

    Google Scholar 

  18. J. Leon and A. Spire, J. Phys. A, 34, 7359 (2001); nlin.PS/0105066 (2001).

    Google Scholar 

  19. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981); V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Plenum, New York (1984).

    Google Scholar 

  20. A. C. Newell, “The inverse scattering transform,” in: Solitons (R. K. Bullough and P. J. Caudrey, eds.), Springer, Berlin (1980), p. 177.

    Google Scholar 

  21. F. Calogero and S. De Lillo, Inverse Problems, 4, L33 (1988); J. Math. Phys., 32, 99 (1991); M. J. Ablowitz and S. De Lillo, Phys. Lett. A, 156, 483 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degasperis, A., Manakov, S.V. & Santini, P.M. Initial-Boundary Value Problems for Linear and Soliton PDEs. Theoretical and Mathematical Physics 133, 1475–1489 (2002). https://doi.org/10.1023/A:1021138525261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021138525261

Navigation