Skip to main content
Log in

Chalcogenide Exchange Reaction of [RGa(μ3-Te)]4 with Elemental Sulfur and Selenium: A Density Functional Theory Study

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Thermodynamic and mechanistic features of the chalcogen exchange reaction between [RGa(μ 3-Te)]4 and elemental sulfur or selenium have been studied employing density functional theory (DFT) calculations using the BL3YP basis set and Stuttgart pseudopotentials. For [MeGa(μ 3-E)]4 (E=S, Se, Te) the correlation between the calculated parameters and diffraction data for their isolable analogs is greater than 98%. Each step of the conversion of [MeGa(μ 3-Te)]4 to [MeGa(μ 3-E)]4 via [Me4Ga4(μ 3-Te)4−x (μ 3-E) x ] (E=S, Se) is predicted to occur as a series of isolated reactions. The entropy change for each chalcogen exchange is small in magnitude and corresponds to the degree of cage distortion within the cubane molecules. Calculations performed on [MeGa(μ 3-Te)]4...S8 and [MeGa(μ 3-Te)]4-S suggest that an increase in electrophilicity of the gallium next to a surface bound tellurium may result in nucleophilic cage opening for which intermediate structures are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Power and A. R. Barron (1991). J. Chem. Soc., Chem. Commun. 1315.

  2. M. B. Power, J. W. Ziller, A. N. Tyler, and A. R. Barron (1992). Organometallics 11, 1055.

    Google Scholar 

  3. A. N. MacInnes, M. B. Power, and A. R. Barron (1992). Chem. Mater. 4, 11.

    Google Scholar 

  4. A. N. MacInnes, M. B. Power, and A. R. Barron (1993). Chem. Mater. 5, 1344.

    Google Scholar 

  5. (a) S. Schulz, H. W. Roesky, H. J. Koch, G. M. Sheldrick, D. Stalke, and A. Kuhn (1993). Angew. Chem., Int. Ed. Engl. 32, 1729. (b) W. Uhl, R. Graupner, M. Layh, and U. Schütz (1995). J. Organomet. Chem. 93, C1. (c) N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Noth, W. Ponikwar, and H. Schwenk (1999). J. Organomet. Chem. 574, 246. (d) M. V. Capparelli, P. Hodge, and B. Piggott (1997). J. Chem. Soc., Chem. Commun. 937. (e) S. Schulz, E. G. Gillan, L. M. Rogers, R. Rogers, and A. R.Barron (1996). Organometallics 15, 4880.

    Google Scholar 

  6. M. B. Power, J. W. Ziller, and A. R. Barron (1992). Organometallics 11, 2783.

    Google Scholar 

  7. E. G. Gillan and A. R. Barron (1997). Chem. Mater. 9, 3037.

    Google Scholar 

  8. B. D. Fahlman and A. R. Barron (1998). Organometallics 17, 5310.

    Google Scholar 

  9. (a) J. Millam and G. E. Scuseria (1997). J. Chem. Phys. 106, 5569. (b) M. C. Strain, G. E. Scuseria, and M. J. Frisch (1996). Science 271, 51. (c) R. E. Stratmann, G. E. Scuseria, and M. J. Frisch (1996). Chem. Phys. Lett. 257, 213.

    Google Scholar 

  10. (a) A. D. Corso, A. Pasquarello, A. Baldereschi, and R. Car (1996). Phys. Rev. B: Condensed Matter 53, 1180. (b) A. Nagy and I. Andrejkovics (1996). Phys. Rev. A: At., Mol., Opt. Phys. 53, 3656. (c) M. Fuchs, M. Bockstedte, E. Pehke, and M. Scheffler (1998). Phys. Rev. B: Condensed Matter 57, 2134.

    Google Scholar 

  11. B. G. Willis and K. F. Jensen (1998). J. Phys. Chem. 102, 2613.

    Google Scholar 

  12. A. R. Barron, K. D. Dobbs, and M. M. Francl (1991). J. Am. Chem. Soc. 113, 39.

    Google Scholar 

  13. W. M. Cleaver, M. Späth, D. Hnyk, G. McMurdo, M. B. Power, M. Stuke, D. W. H. Rankin, and A. R. Barron (1995). Organometallics 14, 690.

    Google Scholar 

  14. M. B. Power, A. R. Barron, D. Hnyk, H. E. Robertson, and D. W. H. Rankin (1995). Adv. Mater. Optics Electron. 5, 177.

    Google Scholar 

  15. M. B. Power and A. R. Barron (1991). J. Chem. Soc., Chem. Commun. 1315.

  16. C. J. Harlan, E. G. Gillan, S. G. Bott, and A. R. Barron (1996). Organometallics 15, 5479.

    Google Scholar 

  17. E. G. Gillan, S. G. Bott, and A. R. Barron (1997). Chem. Mater. 9, 796.

    Google Scholar 

  18. http://www.emsl.pnl.gov:2080/forms/basisform.html.

  19. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople (Gaussian, Inc., Pittsburgh, PA, 1998).

  21. W. D. Chandler, K. E. Johnson, and J. L. Campbell (1995). Inorg. Chem. 34, 4943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Barron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahlman, B.D., Daniels, A.D., Scuseria, G.E. et al. Chalcogenide Exchange Reaction of [RGa(μ3-Te)]4 with Elemental Sulfur and Selenium: A Density Functional Theory Study. Journal of Cluster Science 13, 587–599 (2002). https://doi.org/10.1023/A:1021135930768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021135930768

Navigation