Review Mechanical properties of ice and snow

Abstract

The mechanical properties of ice and snow are reviewed. The tensile strength of ice varies from 0.7–3.1 MPa and the compressive strength varies from 5–25 MPa over the temperature range −10°C to −20°C. The ice compressive strength increases with decreasing temperature and increasing strain rate, but ice tensile strength is relatively insensitive to these variables. The tensile strength of ice decreases with increasing ice grain size. The strength of ice decreases with increasing volume, and the estimated Weibull modulus is 5. The fracture toughness of ice is in the range of 50–150 kPa m1/2 and the fracture-initiating flaw size is similar to the grain size. Ice-soil composite mixtures are both stronger and tougher than ice alone. Snow is a open cellular form of ice. Both the strength and fracture toughness of snow are substantially lower than those of ice. Fracture-initiating flaw sizes in snow appear to correlate to the snow cell size.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. M. Andrews, Journal of Glaciology 31 (1985) 171.

    Google Scholar 

  2. 2.

    M. Mellor, ibid. 19 (1977) 15.

    Google Scholar 

  3. 3.

    R. L. Hooke et al., Cold Regions Science and Technology 3 (1980) 263.

    Google Scholar 

  4. 4.

    J. M. Greenberg, Astronomy and Astrophysics 330 (1998) 375.

    Google Scholar 

  5. 5.

    E. M. Schulson, Journal of the Minerals, Metals, Materials Society 51 (1999) 21.

    Google Scholar 

  6. 6.

    L. W. Gold, Canadian Journal of Civil Engineering 15 (1988) 1080.

    Google Scholar 

  7. 7.

    F. D. Haynes, “Effect of Temperature on the Strength of Snow-Ice,” Department of the Army, Cold Regions Research and Engineering Laboratory, Corps of Engineers, CRRELReport 78-27, Hanover, New Hampshire, December 1978.

  8. 8.

    J. H. Currier and E. M. Schulson, Acta metal. 30 (1982) 1511.

    Google Scholar 

  9. 9.

    R. W. Lee and E. M. Schulson, Journal of Offshore Mechanics and Arctic Engineering 110 (1988) 187.

    Google Scholar 

  10. 10.

    X. Xian, M. L. Chu, R. J. Scavuzzo and T. S. Srivatsan, Journal Mater. Sci. Lett. 8 (1989) 1205.

    Google Scholar 

  11. 11.

    J. Druez and P. McComber, Transactions of the Canadian Society for Mechanical Engineering 13 (1989) 59.

    Google Scholar 

  12. 12.

    E. M. Schulson, S. G. Hoxie and W. A. Nixon, Philosophical Magazine A 59 (1989) 303.

    Google Scholar 

  13. 13.

    P. Duval, M. F. Ashby and I. Anderman, J. Phys. Chem 87 (1983) 4066.

    Google Scholar 

  14. 14.

    J. Weertman, Annu. Rev. Earth Planet Sci. 11 (1983) 215.

    Google Scholar 

  15. 15.

    J. P. Dempsey, S. J. Defranco, R. M. Adamson and S. V. Mulmule, International Journal of Fracture 95 (1999) 325.

    Google Scholar 

  16. 16.

    J. P. dempsey, R. M. Adamson and S. V. Mulmule, ibid. 95 (1999) 347.

    Google Scholar 

  17. 17.

    W. Weibull, Ingenioersvetenskapsakad., Handl. 151 (1939) 1.

    Google Scholar 

  18. 18.

    J. J. Petrovic, Metallurgical Transactions A 18A (1987) 1829.

    Google Scholar 

  19. 19.

    R. M. Andrews, Journal of Glaciology 31 (1985) 171.

    Google Scholar 

  20. 20.

    W. A. Nixon and E. M. Schulson, Journal de Physique 48 (1987) C1–313.

    Google Scholar 

  21. 21.

    Idem., Journal of Offshore Mechanics and Arctic Engineering 110 (1988) 192.

    Google Scholar 

  22. 22.

    D. L. Bentley, J. P. Dempsey, D. S. Sodhi and Y. Wei, Cold Regions Science and Technology 17 (1989) 7.

    Google Scholar 

  23. 23.

    M. P. Fischer, R. B. Alley and T. Engelder, Journal of Glaciology 41 (1995) 138.

    Google Scholar 

  24. 24.

    L. J. Weber and W. A. Nixon, Journal of Offshore Mechanics and Arctic Engineering 118 (1996) 135.

    Google Scholar 

  25. 25.

    T. Uchida and S. Kusumoto, JSME International Journal Series A - Solid Mechanics and Materials 42 (1999) 601.

    Google Scholar 

  26. 26.

    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, Journal of the American Ceramic Society 64 (1981) 533.

    Google Scholar 

  27. 27.

    B. Lawn, “Fracture of Brittle Solids,” 2nd ed. (Cambridge University Press, Cambridge, UK, 1993.).

    Google Scholar 

  28. 28.

    W. D. King and N. H. Fletcher, Journal of the Atmospheric Sciences 33 (1976) 97.

    Google Scholar 

  29. 29.

    F. D. Haynes and J. A. Karalius, “Effect of Temperature on the Strength of Frozen Silt,” Cold Regions Research and Engineering Laboratory Report CRREL 77-3, U.S. Army Corps of Engineers, Hanover, New Hampshire, February 1977.

    Google Scholar 

  30. 30.

    M. A. Lange and T. J. Ahrens, Journal of Geophysical Research 88 (1983) 1197.

    Google Scholar 

  31. 31.

    W. A. Nixon and L. J. Weber, Journal of Cold Regions Engineering 5 (1991) 14.

    Google Scholar 

  32. 32.

    H. Li and H. Yang, ibid. 14 (2000) 43.

    Google Scholar 

  33. 33.

    H. Li, H. Yang and Z. Liu, Can. Geotech. J. 37 (2000) 253.

    Google Scholar 

  34. 34.

    L. J. Gibson and M. F. Ashby, “Cellular Solids,” 2nd ed. (Cambridge University Press, 1997.).

  35. 35.

    R. A. Sommerfeld, Journal of Geophysical Research 79 (1974) 3353.

    Google Scholar 

  36. 36.

    D. M. McClung, Journal of Glaciology 22 (1979) 1.

    Google Scholar 

  37. 37.

    Z. Watanabe, ibid. 26 (1980) 255.

    Google Scholar 

  38. 38.

    H. Narita, ibid. 26 (1980) 275.

    Google Scholar 

  39. 39.

    B. Salm, Reviews of Geophysics and Space Physics 20 (1982) 1.

    Google Scholar 

  40. 40.

    H. Narita, Contributions From the Institute of Low Temperature Sciences, Series A 32 (1983) 1.

    Google Scholar 

  41. 41.

    J. B. Johnson, D. J. Solie, J. A. Brown, and E. S. Gaffney, J. Appl. Phys. 73 (1993) 4852.

    Google Scholar 

  42. 42.

    K. C. Agrawal and R. K. Mittal, Defence Science Journal 45 (1995) 93.

    Google Scholar 

  43. 43.

    V. N. Golubev and A. D. Frolov, Annals of Glaciology 26 (1998) 45.

    Google Scholar 

  44. 44.

    R. F. Trunin, G. V. Simakov, M. V. Zhernokletoy and V. V. Dorokhin, High Temperature 37 (1999) 702.

    Google Scholar 

  45. 45.

    H. O. K. Kirchner, G. Michot and T. Suzuki, Philosophical Magazine A 80 (2000) 1265.

    Google Scholar 

  46. 46.

    V. N. Golubev and A. D. Frolov, Annals of Glaciology 31 (2000) 434.

    Google Scholar 

  47. 47.

    H. O. K. Kirchner, G. Michot and J. Schweizer, Scripta Materialia 46 (2002) 425.

    Google Scholar 

  48. 48.

    S. K. Maiti, M. F. Ashby and L. J. Gibson, ibid. 18 (1984) 213.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrovic, J.J. Review Mechanical properties of ice and snow. Journal of Materials Science 38, 1–6 (2003). https://doi.org/10.1023/A:1021134128038

Download citation

Keywords

  • Polymer
  • Grain Size
  • Mechanical Property
  • Tensile Strength
  • Compressive Strength