Skip to main content
Log in

Anomalous Rayleigh-Wave Propagation Along Oceanic Trench

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A clear later phase of amplitude larger than the direct surface wave packet was observed at stations in Hokkaido, Japan, for several events of the December 1991 off-Urup earthquake swarm in the Kuril Islands region. From its particle motion, this phase is likely to be a fundamental Rayleigh wave packet that arrived with an azimuth largely deviated from each great-circle direction. As its origin, Nakanishi (1992) proposed that the sea-trench topography in this area as deep as 10 km may produce a narrow zone of low velocity for Rayleigh waves of periods around 15 sec. Following this idea, we compute ray paths and estimate how Rayleigh waves would propagate if we assume that lateral velocity variations are caused only by seafloor topography. We confirm that thick sea water in the trench indeed produces the phase velocity of Rayleigh waves to be smaller than in a surrounding area by the degree over 100%. Such a low-velocity zone appears only in a period range from 12 to 20 sec. Although this strong low-velocity zone disturbs the direction of Rayleigh wave propagation from its great circle, the overall ray paths are not so affected as far as an epicentre is outside this low-velocity zone, that is, off the trench axis. In contrast, the majority of rays are severely distorted for an event within the low-velocity zone or, in other words, in the neighborhood of the trench axis. For such an event, a part of wave energy appears to be trapped in this zone and eventually propagates outwards due to the curvature or bend of trench geometry, resulting in very late arriving waves of large amplitude with an incident direction clearly different from great circles. This phenomenon is observed only at a very limited period range around 16 sec. These theoretical results are consistent with the above mentioned observation of Nakanishi (1992).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K. and Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman, San Francisco.

    Google Scholar 

  • Boore D.M., 1972. Finite difference methods for seismic wave propagation in heterogeneous materials. In: B.A. Bolt (Ed.), Seismology: Surface Waves and Earth Oscillations (Methods in Computational Physics, vol. 11) (ed. by B.A. Bolt), New York, Academic Press.

    Google Scholar 

  • Červený V., 2001. Seismic Ray Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dahlen F.A. and Tromp J., 1998. Theoretical Global Seismology. Princeton University Press, Princeton.

    Google Scholar 

  • Debayle E. and Kennett B.L.N., 2000. The Australian continental upper mantle: Structure and deformation inferred from surface waves. J. Geophys. Res., 105, 25243-25450.

    Google Scholar 

  • Dorman J., Ewing M. and Oliver J., 1960. Study of shear-velocity distribution in the upper mantle by mantle Rayleigh waves. Bull. Seismol. Soc. Amer., 50, 87-115.

    Google Scholar 

  • Ewing M., Press F. and Worzel J.L., 1952. Further study of the T phase. Bull. Seismol. Soc. Amer., 42, 37-51.

    Google Scholar 

  • Fukao Y. and Kanjo K., 1980. A zone of low-frequency earthquakes beneath the inner wall of the Japan trench. Tectonophysics, 67, 153-162.

    Google Scholar 

  • Hori S., Inoue H., Fukao Y. and Ukawa M., 1985. Seismic detection of the untransformed ‘basaltic’ oceanic crust subducting into the mantle. Geophys. J.R. Astron. Soc., 83, 169-197.

    Google Scholar 

  • Ihmle P.F. and Madariaga R., 1996. Monochromatic body waves excited by great subduction zone earthquakes. Geophy. Res. Lett., 23, 2999-3002.

    Google Scholar 

  • Jobert N. and Jobert G., 1983. An application of ray theory to the propagation of waves along a laterally heterogeneous spherical earth. Geophys. Res. Lett., 10, 1148-1151.

    Google Scholar 

  • Kennett B.L.N., 1998. Guided waves in three-dimensional structures. Geophys. J. Int., 133, 159-174.

    Google Scholar 

  • Kennett B.L.N., Bostock M.G. and Xie J.-K., 1960. Guided-wave tracking in 3-D: A tool for interpreting complex regional seismograms. Bull. Seismol. Soc. Amer., 80, 633-642.

    Google Scholar 

  • Kirpichnikova N.Y., 1969. Rayleigh wave concentrated near a ray on the surface of an inhomogeneous elastic body. In: Mathematical problems in wave propagation theory, part II, Seminar in Mathematics, 15, 49-62, Steklov Mathematical Institute, Nauka, Leningrad (in Russian, English translation by Consultants Bureau, New York, 1971).

    Google Scholar 

  • Nakanishi I., 1992. Rayleigh waves guided by sea-trench topography. Geophy. Res. Lett., 19, 2385-2388.

    Google Scholar 

  • Nakanishi I., Hanakago Y., Moriya T. and Kasahara M., 1991. Performance test on long-period moment tensor determination for near earthquakes by a sparse local network. Geophy. Res. Lett., 18, 223-226.

    Google Scholar 

  • Okamoto T., 1993. Effects of sedimentary structure and bathymetry near the source on teleseismic P waveforms from shallow subduction zone earthquakes. Geophys. J. Int., 112, 471-490.

    Google Scholar 

  • Petersen H., Avouac J.P. and Campillo M., 1998. Anomalous surface waves from Lop Nor nuclear explosions: Observations and numerical modelling. J. Geophys. Res., 103, 15051-15068.

    Google Scholar 

  • Saito M., 1988. DISPER80: A subroutine package for the calculation of seismic normal-mode solutions. In: D.J. Doornbos (Ed.), Seismological Algorithms, Academic Press, London.

    Google Scholar 

  • Shapiro N.M., Campillo M., Singh S.K. and Pacheco J., 1998. Seismic channel waves in the accretionary prism of the Middle America Trench. Geophy. Res. Lett., 25, 101-194.

    Google Scholar 

  • Shapiro N.M., Olsen K.B. and Singh S.K., 2000. Wave-guide effects in subduction zones: evidence from three-dimensional modelling. Geophy. Res. Lett., 27, 433-436.

    Google Scholar 

  • Van Heijst H.J. and Woodhouse J.H., 1999. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping. Geophys. J. Int., 137, 601-620.

    Google Scholar 

  • Wadati K., 1928. Unusual nature of deep-sea earthquakes — on the three types of earthquakes. Kishoshushi, 6, 1-43 (in Japanese).

    Google Scholar 

  • Woodhouse J.H., 1974. Surface waves in a laterally varying layered structure. Geophys. J.R. Astron. Soc., 37, 461-490.

    Google Scholar 

  • Woodhouse J.H. and Dziewonski A.M., 1984. Mapping the upper mantle: Three-dimensional modelling of Earth structure by inversion of seismic waveforms. J. Geophys. Res., 37, 5953-5986.

    Google Scholar 

  • Woodhouse J.H. and Wong Y.K., 1986. Amplitude, phase and path anomalies of mantle waves. Geophys. J.R. Astron. Soc., 87, 753-773.

    Google Scholar 

  • Yomogida K., 1984. Gaussian beams for surface waves in laterally slowly-varying media. Geophys. J.R. Astron. Soc., 82, 511-533.

    Google Scholar 

  • Yomogida K. and Aki K., 1985. Waveform synthesis of surface waves in a laterally heterogeneous Earth by the Gaussian beam method. J. Geophys. Res., 90, 7665-7688.

    Google Scholar 

  • Yoshida M., 2000. Fluctuation of group velocity of Love waves across a dent in the continental crust. Earth, Planets Space, 52, 393-402.

    Google Scholar 

  • Zahradník J. and Moczo P., 1996. Hybrid seismic modelling based on discrete-wavenumber and finite-difference methods. Pure Appl. Geophys., 148, 21-38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yomogida, K., Okuyama, R. & Nakanishi, I. Anomalous Rayleigh-Wave Propagation Along Oceanic Trench. Studia Geophysica et Geodaetica 46, 691–710 (2002). https://doi.org/10.1023/A:1021129405870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021129405870

Navigation