Skip to main content
Log in

Aqueous Geochemistry of Rare Earth Elements and Yttrium. XII: Potentiometric Stability Constant Determination of Bis-Tris Complexes with La, Nd, Eu, Gd, Yb, Dy, Er, Lu, and Y

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conditional stability constants of 2-[bis(2-hydroxyethyl)amino]-2(hydroxymethyl)-1,3-propanediol (BT) complexes of trivalent rare earth element (Ln) ions (La, Nd, Eu, Gd, Yb, Dy, Er, Lu) and Y were determined potentiometrically in aqueous NaCl solutions at 30°C and 0.1 M ionic strength. Least-squares fitting shows that, at <0.04 molal BT, the complex LnBT3+ is dominant, with LnBT2 3+ forming a secondary complex, where:

$$\begin{gathered} { Ln}^{{3 + }} + {BT} \leftrightarrow {LnBT}^{{3 + }} { }\beta _{11} \hfill \\ {Ln}^{{3 + }} + 2{BT} \leftrightarrow {Ln(BT)}_{2}^{{3 + }} { }\beta _{21} \hfill \\ \end{gathered}$$

Conditional stability constants appear to be directly related to the ionic radius of the trivalent ion in question. The optimal ionic radius, 104–105 pm, yields values of log \(\beta _{{21}}^{*} = 10.93 \pm 0.63\) (Gd) and \(\beta _{{11}}^{*} = 6.83 \pm 0.14\) (Yb). Complexation drops off steeply on either side of the ideal ionic radius. In relating the stability constants to ionic radius, it is assumed that BT complexes with Gd, Dy, Er, and Lu have coordination number eight, whereas those with La, Nd, and Eu have coordination number nine. The smoothest trend of stability constants with ionic radius is obtained if Yb–BT complexes are assumed to have coordination number nine. These results may reflect the ability of BT to form an ionic radius-specific chelate structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Olson, 25th Actinide Separations Conf. p. 8(2001).

  2. J. C. Lewis, Anal. Biochem. 14, 495(1966).

    PubMed  Google Scholar 

  3. K. H. Scheller, T. H. J. Abel, P. E. Polanyi, P. K. Wenk, B. E. Fischer, and H. Sigel, Eur. J. Biochem. 107, 455(1980).

    PubMed  Google Scholar 

  4. H. Sigel, K. H. Scheller and B. Prijs, Inorg. Chem. Acta. 6, 147(1982).

    Google Scholar 

  5. J. M. Pfefferié and J. C. Bünzli, Helv. Chimi. Acta. 72, 1487(1989).

    Google Scholar 

  6. D. J. Wesolowski, D. A. Palmer, and G. M. Begun, J. Solution Chem. 19, 159(1990).

    Google Scholar 

  7. K. H. Hong, E. J. Ha, and K. S. Bai, Bull. Korean Chem. Soc. 16, 406(1995).

    Google Scholar 

  8. Q. Chen, Y. D. Chang, and J. Zubieta, Inorg. Chim. Acta 258, 257(1997).

    Google Scholar 

  9. S. J. Oh, Y. S. Choi, S. Hwangbo, S. C. Bae, J. K. Ku, and J. W. Park, Chem. Commun, p. 2189(1998).

  10. P. Gómez-Tagle and A. K. Yatsimirsky, Inorg. Chem. 40, 3786(1998).

    Google Scholar 

  11. J. A. Winchester and P. A. Floyd, Chem. Geol. 20, 325(1977).

    Google Scholar 

  12. D. A. Wood, J. Tarney, and B. L. Weaver, Tectonophysics 75, 91(1981).

    Google Scholar 

  13. J. W. Shervais, Earth Plant. Sci. Let. 51, 101(1982).

    Google Scholar 

  14. J. S. Seewald and W. E. Seyfried, Jr., Geochim. Cosmochim. Acta 55, 659(1990).

    Google Scholar 

  15. P. L. Hellman and P. Henderson, Nature 267, 38(1977).

    Google Scholar 

  16. P. L. Hellman, R. E. Smith, and P. Henderson, Cont. Min. Pet. 71, 23(1979).

    Google Scholar 

  17. B. Bock, S. M. McLennan, and G.N. Hanson, Geochim. Cosmochim. Acta 58, 5245(1994).

    Google Scholar 

  18. D. K. McDaniel, S. R. Hemming, S. M. McLennan, and G.N. Hanson, Geochim. Cosmochim. Acta 58, 931(1994).

    Google Scholar 

  19. M. Ohr, A. N. Halliday, and D. R. Peacor, Geochim. Cosmochim. Acta 58, 289(1994).

    Google Scholar 

  20. D. J. Kontak and S. Jackson, Can. Min. 33, 445(1995).

    Google Scholar 

  21. I. M. Kolthoff, E. B. Sandell, E. J. Meehan, and S. Bruckenstein, Quantitative Chemical Analyses (Macmillian, NY, 1969).

    Google Scholar 

  22. R. Ding and S. A. Wood, Geochem. Soc. Special Publ. 7, 209(2002

    Google Scholar 

  23. F. H. Spedding, M. J. Pikal, and B. O. Ayers, J. Phys. Chem. 70, 2440(1966).

    Google Scholar 

  24. F. H. Spedding, P. F. Cullen, and A. Habenschuss, J. Phys. Chem. 78, 1106(1974).

    Google Scholar 

  25. F. H. Spedding, J. A. Rard, and A. Habenschuss, J. Phys. Chem. 81, 1069(1977).

    Google Scholar 

  26. J. C. G. Bünzli and G. R. Choppin, Lanthanide Probes in Life, Chemical and Earth Sciences. Theory and Practice (Elsevier, New York, 1989).

    Google Scholar 

  27. S. A. Wood, Chem Geol. 82, 159(1990).

    Google Scholar 

  28. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, NY, 1976).

    Google Scholar 

  29. A. E. Martell and R. J. Motekaitis, Determination of Stability Constants, 2nd edn. (VCH Publishers, NY, 1992).

    Google Scholar 

  30. C. H. Gammons, S. A. Wood, and A. E. Williams-Jones, Geochim. Cosmochim, Acta 60, 4615(1996).

    Google Scholar 

  31. F. J. Millero, Geochim. Cosmochim. Acta 56, 3123(1992).

    Google Scholar 

  32. B. M. Fabuss, A. Korosi, and A. K. M. Shamsul Huq, J.Chem. Eng. Data 11, 325(1966).

    Google Scholar 

  33. R. H. Busey and R. E. Mesmer, J.Chem. Eng. Data 23, 175(1978).

    Google Scholar 

  34. M. Paabo and G. J. Bates, J. Phys. Chem. 65, 667(1970).

    Google Scholar 

  35. C. D. McGlothlin and J. Jordan, Anal. Lett. 9, 245(1976).

    Google Scholar 

  36. Y. Kitamura and T. Itoh, J. Solution Chem. 16, 715(1987).

    Google Scholar 

  37. D. J. Wesolowski and D. A. Palmer, J. Solution Chem. 18, 545(1989).

    Google Scholar 

  38. S. A. Wood, D. A. Palmer, D. J. Wesolowski, and P. Bénézeth, Geochem. Soc. Special Publ. 7, 229(2002

    Google Scholar 

  39. S. Aime, M. Botta, M. Fasano, M. Paula, M. Marques, C. F. G. C. Geraldes, D. Pubanz, and A. E. Merbach, Inorg. Chem. 36, 2059(1997).

    PubMed  Google Scholar 

  40. Greenwood and Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1989).

    Google Scholar 

  41. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, NY, 1999).

    Google Scholar 

  42. R. D. Shannon, Acta Crystallogr. A. 32, 751(1976).

    Google Scholar 

  43. K. N. Nicholson, B. Twamley, and S. A. Wood, Acta Crystallogr. 57, 1133(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten N. Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, K.N., Wood, S.A. Aqueous Geochemistry of Rare Earth Elements and Yttrium. XII: Potentiometric Stability Constant Determination of Bis-Tris Complexes with La, Nd, Eu, Gd, Yb, Dy, Er, Lu, and Y. Journal of Solution Chemistry 31, 703–717 (2002). https://doi.org/10.1023/A:1021128907144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021128907144

Navigation