Skip to main content
Log in

EQCM Study of Rhodium Anodic Dissolution in Sulfuric Acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Rh anodic dissolution is studied in 0.5 M H2SO4 solution in the E range from 0.2 to 1.2 V (RHE) by means of EQCM, cyclic voltammetry, photometry, and XPS. Bright pure Rh electroplate ∼0.5 μm thick on a gold sputtered quartz crystal electrode is used for electrochemical and microgravimetrical studies. It is found that the increase in Rh electrode weight during the anodic process is lesser than its decrease during the cathodic one. The difference is 120 ± 60 ng cm–2. The electrode weight also decreases under open-circuit conditions, i.e. at E I = 0. A linear relationship between the weight change and the charge exists for the anodic process. The presence of Rh(III) compounds in the solution and on the electrode surface is confirmed by a photometrical analysis and XPS measurements. It is assumed that the formation and reduction of Rh(OH)3 phase on Rh electrode surface within E range investigated proceed according to equation Rh + 3H2O ⇔ [Rh(OH)3]s + 3H+ + 3e, where [Rh(OH)3]s is a surface layer of Rh(OH)3 phase. \(E_{{\text{Rh/Rh}}\left( {{\text{OH}}} \right)_{\text{3}} }^0\) is evaluated to be ∼0.6 V. Rh(OH)3 partly dissolves in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Will, F.G. and Knorr, C.A., Z. Elektrochem., 1960, vol. 64, p. 270.

    Google Scholar 

  2. Rand, D.A.J. and Woods, R., J. Electroanal. Chem., 1971, vol. 31, p. 29.

    Google Scholar 

  3. Biegler, T., Rand, D.A.J., and Woods, R., J. Electroanal. Chem., 1971, vol. 29, p. 269.

    Google Scholar 

  4. Dickertman, D., Schultze, J.W., and Vetter, K.J., J. Electroanal. Chem., 1974, vol. 55, p. 429.

    Google Scholar 

  5. Tarasevich, M.R., Radyushkina, K.A., and Burshtein, R.Kh., Elektrokhimiya, 1967, vol. 3, p. 455.

    Google Scholar 

  6. Kozlowska, H.A., Conway, B.E., Hamelin, A., and Stoicovicu, L., Electrochim. Acta, 1986, vol. 31, p. 1051.

    Google Scholar 

  7. Jaksic, M.M., Johansen, B., and Tunold, R., Int. J. Hydrogen Energy, 1994, vol. 19, p. 35.

    Google Scholar 

  8. Wasberg, M. and Horanyi, G., J. Electroanal. Chem., 1995, vol. 386, p. 213.

    Google Scholar 

  9. Burke, L.D., Casey, J.K., and Morrissey, J.A., Electrochim. Acta, 1993, vol. 38, p. 897.

    Google Scholar 

  10. Burke, L.D., Buckley, D.T., and Morrisey, J.A., Analyst (Cambridge), 1994, vol. 119, p. 841.

    Google Scholar 

  11. Burke, L.D. and O'Dwyer, K.J., Electrochim. Acta, 1990, vol. 35, p. 1821.

    Google Scholar 

  12. Burke, L.D. and Casey, J.K., J. Appl. Electrochem., 1993, vol. 23, p. 573.

    Google Scholar 

  13. Burke, L.D., Electrochim. Acta, 1994, vol. 39, p. 1841.

    Google Scholar 

  14. Pallotta, C., De Tacconi, N.R., and Arvia, A.J., Electrochim. Acta, 1981, vol. 26, p. 261.

    Google Scholar 

  15. Parajon Costa, B., Giordano, M.C., Pallota, C.D., and Arvia, A.J., J. Electroanal. Chem., 1986, vol. 199, p. 381.

    Google Scholar 

  16. Chialvo, A.C., Triaca, W.E., and Arvia, A.J., J. Electroanal. Chem., 1987, vol. 237, p. 237.

    Google Scholar 

  17. Peuckert, M., Surf. Sci., 1984, vol. 141, p. 500.

    Google Scholar 

  18. Jerkiewicz, G. and Borodzinski, J.J., Langmuir, 1993, vol. 9, p. 2202.

    Google Scholar 

  19. Jerkiewicz, G. and Borodzinski, J.J., J. Chem. Soc., Faraday Trans., 1994, vol. 90, p. 3669.

    Google Scholar 

  20. Villiard, F. and Jerkiewicz, G., Can. J. Chem., 1997, vol. 75, p. 1656.

    Google Scholar 

  21. Turova, N.Ya., Spravochnye tablitsy po neorganicheskoi khimii (Reference Tables on Inorganic Chemistry), Leningrad: Khimiya, 1977, p. 102.

    Google Scholar 

  22. Livintstone, S., The Chemistry of Rhutenium, Rhodium, Palladium, Osmium, Iridium, and Platinum, Oxford: Pergamon, 1975.

    Google Scholar 

  23. Emsley, J., The Elements, Oxford: Clarendon, 1991.

    Google Scholar 

  24. Jusys, Z. and Stalnionis, G., J. Electroanal. Chem., 1997, vol. 431, p. 141.

    Google Scholar 

  25. Michri, A.A., Pshenichnikov, A.G., and Burshtein, R.Kh., Elektrokhimiya, 1972, vol. 8, p. 364.

    Google Scholar 

  26. Juodkazis, K., Juodkazyte, J., Sebeka, B., and Lukinskas, A., Chemija, 1998, vol. 9, p. 46.

    Google Scholar 

  27. Jusys, Z. and Bruckenstein, S., Electrochem. Solid-State Lett., 1998, vol. 1, p. 74.

    Google Scholar 

  28. Juodkazis, K., Juodkazyte, J., Sebeka, B., and Lukinskas, A., Electrochem. Commun., 1999, vol. 1, p. 315.

    Google Scholar 

  29. Juodkazis, K., Juodkazyte, J., Jasiulaitiene, V., et al., Electrochem. Commun., 2000, vol. 2, p. 503.

    Google Scholar 

  30. Ginzburg, S.I., Ezerskaya, N.A., Prokof'eva, I.V., Fedorenko, N.V., Shlenskaya, V.I., and Bel'skii, N.K., Analiticheskaya khimiya platinovykh metallov (Analytical Chemistry of Platinum Metals), Moscow: Nauka, 1972, p. 127.

    Google Scholar 

  31. O'Sullivan, E.J.M. and Burke, L.D., J. Electrochem. Soc., 1990, vol. 137, p. 466.

    Google Scholar 

  32. Vukovic, M. and Čukman, D., J. Electroanal. Chem., 1992, vol. 333, p. 195.

    Google Scholar 

  33. Pourbaix, M., Atlas d'equilibres Electrochimiques, Paris: Gauthier-Villars, 1963, p. 399.

    Google Scholar 

  34. Lur'e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1979, p. 100.

    Google Scholar 

  35. Shumacher, R., Helbig, W., Hass, I., et al., J. Electroanal. Chem., 1993, vol. 354, p. 59.

    Google Scholar 

  36. Wagner, C.D., Riggs, W.M., Davis, L.E., et al., Handbook of X-ray Photoelectron Spectroscopy, Eden Prarie: Physical Electronics, 1978, p. 190.

    Google Scholar 

  37. Wagner, C.D., Zatko, D.A., and Raymond, R.H., Anal. Chem., 1980, vol. 52, p. 1448.

    Google Scholar 

  38. Peuckert, M., Coenen, F.P., and Bonzel, H.P., Surf. Sci., 1984, vol. 141, p. 515.

    Google Scholar 

  39. Zhang, Y., Gao, X., and Weaver, M.J., J. Phys. Chem., 1993, vol. 97, p. 8656.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juodkazis, K., Stalnionis, G., SŠebeka, B. et al. EQCM Study of Rhodium Anodic Dissolution in Sulfuric Acid. Russian Journal of Electrochemistry 38, 1157–1162 (2002). https://doi.org/10.1023/A:1021126523675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021126523675

Keywords

Navigation