Skip to main content
Log in

The Adaptive Effects of Hypoxic Preconditioning of Brain Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A preventive short-term hypoxia (preconditioning) increases neuronal resistance against subsequent strong hypoxic effects. Literature review and authors' own data on molecular-cellular mechanisms of the hypoxic preconditioning, are presented. Participation of intracellular signal transduction, genome, stress-proteins, and neuromodulating peptides in this process, is discussed. The role of glutamatergic as well as calcium and phosphoinositide regulatory systems and neuromodulating factors as the components of a “volume” signal transmission are analyzed in hypoxic precondition-associated induction of functional tolerance mechanisms against acute harmful effects in neurones of olfactory slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. A. Osterman, “Methods for studying proteins and nucleic acids,” in: Electrophoresis and Ultracentrifugation, [in Russian] (1981).

  2. M. O. Samoilov, The Brain and Adaptation. Molecular-Cellular Mechanisms [in Russian], St. Petersburg (1999).

  3. M. O. Samoilov and A. A. Mokrushin, “Molecular-cellular mechanisms of 'volume' transmission in the brain,” Reports of the Scientific Council of the Russian Academy of Medical Sciences in Experimental and Applied Physiology, 6, 12–13 (1996).

    Google Scholar 

  4. M. O. Samoilov and A. A. Mokrushin, “Peptide modulation of synaptic plasticity induced by anoxia,” Dokl. Ros. Akad. Nauk., 354, No. 4, 565–567 (1997).

    Google Scholar 

  5. M. O. Samoilov and A. A. Mokrushin, “The role of endogenous neuromodulatory peptides in increasing the functional tolerance of brain neurons to anoxia,” Byull. Éksperim. Biol. Med., 125, No. 5, 503–505 (1998).

    Google Scholar 

  6. M. O. Samoilov, D. G. Semenov, E. I. Tyul'kova, and E. A. Bolekhan, “Molecular-cellular mechanisms of the protective effect of short-term anoxia,” Fiziol. Zh. im. I. M. Sechenova, 80, No. 12, 71–75 (1994).

    Google Scholar 

  7. D. G. Semenov, E. I. Tyul'kova, M. O. Samoilov, and E. V. Lazarevich, “Involvement of intracellular regulatory systems in the adaptive effects of short-term anoxia in vitro,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No. 1, 139–148 (1999).

    Google Scholar 

  8. E. I. Tyul'kova, D. G. Semenov, and M. O. Samoilov, “Involvement of the calcium and phosphoinositide systems of intracellular regulation in the adaptation of neurons in olfactory cortex slices to hypoxia in vitro,” Byull. Éksperim. Biol. Med., 125, No. 3, 259–262 (1998).

    Google Scholar 

  9. H. Abe and T. S. Nowak, Jr., “Gene expression and induced ischemic tolerance following brief insults,” Acta Neurobiol. Exp., 56, No. 1, 3–8 (1961).

    Google Scholar 

  10. G. An, T. Lin, J. Liu, and C. Y. Hxu, “Induction of Krox-20 expression after focal cerebral ischemia,” Biochem. Biophys. Res. Commun., 188, No. 30, 1104–1110 (1992).

    Google Scholar 

  11. F. C. Barone, R. F. White, P. A. Spera, and J. Ellison, “Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirements, and interleukin-1 receptor antagonist and early gene expression,” Stroke, 29, 1937–1951 (1998).

    Google Scholar 

  12. P. E. Bickler and B. M. Hansen, “Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion changes and membrane damage,” Brain Res., 665, 269–276 (1994).

    Google Scholar 

  13. J. Chen, S. H. Graham, P. H. Chan, J. Q. Lan, G. J. Zhou, and R. P. Simon, “bcl-2 is expressed in neurons that survive focal ischemia in rat,” Neuroreport, 6, 394–398 (1995).

    Google Scholar 

  14. J. Chen, S. H. Graham, R. L. Zhu, and R. P. Simon, “Stress proteins and tolerance to focal cerebral ischemia,” J. Cereb. Blood Flow Metab., 16, 566–577 (1996).

    Google Scholar 

  15. J. Chen and R. Simon, “Ischemic tolerance in the brain,” Neurology, 48, 306–311 (1997).

    Google Scholar 

  16. D. W. Choi and S. M. Rothman, “The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,” Ann. Rev. Neurosci., 13, 171–182 (1990).

    Google Scholar 

  17. M. Chopp, H. Chen, and K. L. Ho, “Transient hyperthermia protects against subsequent forebrain ischemic cell damage in rat,” Neurobiol., 39, No. 10, 1396–1398 (1989).

    Google Scholar 

  18. M. Chopp, Y. Li, Z. G. Zhang, and S. O. Freytag, “p53 expression in brain after middle cerebral artery occlusion in the rat,” Biochem. Biophys. Res. Commun., 182, 1201–1207 (1992).

    Google Scholar 

  19. G. D. Clark and S. M. Rothman, “Blockade of excitatory amino acid receptors protects anoxic hippocampal slices,” Neuroscience, 21, No. 3, 665–671 (1987).

    Google Scholar 

  20. V. Crepel, C. Hammond, and P. Chinestra, “A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons,” J. Neurophysiol., 70, No. 5, 2045–2055 (1993).

    Google Scholar 

  21. C.-L. Duan, F.-S. Yan, X.-Y. Song, and G.-W. Lu, “Changes of superoxide dismutase, glutathione peroxidase and lipid peroxidase in brain of mice preconditioned by hypoxia,” Biol. Signals and Receptors, 8, No. 4-5, 256–260 (1999).

    Google Scholar 

  22. M. W. Fox, R. E. Anderson, and F. B. Meyer, “Neuroprotection by corticotropin releasing factor during hypoxia in rat brain,” Stroke, 24, 1072–1075 (1993).

    Google Scholar 

  23. A. T. Gage and P. K. Stanton, “Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor,” Brain Res., 719, No. 1-2, 172–178 (1996).

    Google Scholar 

  24. S. S. Glazier, D. M. O'Rourke, D. I. Graham, and F. A. Welsh, “Induction of ischemic tolerance following brief focal ischemia in rat brain,” J. Cereb. Blood Flow Metab., 14, No. 4, 545–553 (1994).

    Google Scholar 

  25. M. P. Goldberg and D. W. Choi, “Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury,” J. Neurosci., 13, No. 8, 3510–3524 (1993).

    Google Scholar 

  26. H. Gozlan, R. Khazipov, and Y. Ben-Ary, “Multiple forms of long-term potentiation and multiple regulatory sites of N-methyl-Daspartate receptors: role of the redox site,” J. Neurobiol., 26, No. 3, 360–369 (1995).

    Google Scholar 

  27. M. C. Grabb and D. W. Choi, “Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors,” J. Neurosci., 19, No. 5, 1657–1662 (1999).

    Google Scholar 

  28. J. Guan, C. Williams, M. Gunning, Could. Mallard, and P. Gluckman, “The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats,” J. Cereb. Blood Flow Metab., 13, 609–616 (1993).

    Google Scholar 

  29. C. Hammond, V. Crepel, H. Gozlan, and Y. Ben-Ary, “Anoxic LTP sheds light on the multiple faces of NMDA receptors,” Trends Neurosci., 17, No. 11, 497–503 (1994).

    Google Scholar 

  30. R. Hata, G. Mies, C. Weissner, and K.-A. Hossman, “Differential expression of c-fos and hsp72 mRNA in focal cerebral ischemia of mice,” Neuroreport, 9, 27–32 (1998).

    Google Scholar 

  31. C. Heurteaux, I. Lauritzen, C. Widmann, and M. Lazdunski, “Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning,” Proc. Natl. Acad. Sci. USA, 92, 4666–4670 (1995).

    Google Scholar 

  32. K. S. Hsu and C. C. Huang, “Protein kinase C inhibitors block generation of anoxia-induced long-term potentiation,” Neuroreport, 9, No. 15, 3525–2529 (1998).

    Google Scholar 

  33. P. J. Hughes, T. Alexi, and S. S. Schreider, “A role for the tumour suppressor gene p53 in regulating neuronal apoptosis,” Neuroreport, 8, No. 15, 5–12 (1997).

    Google Scholar 

  34. P. J. Hughes and R. H. Michell, “Novel inositol-containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling,” Curr. Opin. Neurobiol., 3 No. 3, 383–400 (1993).

    Google Scholar 

  35. A. J. Hunter, “Calcium antagonists: their role in neuroprotection,” in: Neuroprotective Agents and Cerebral Ischemia, Academic Press (1997), pp. 95–108.

  36. H. Kato, K. Kogure, T. Araki, X. H. Liu, and Y. Itoshina, “Immunohistochemical localization of superoxide dismutase in the hippocampus following ischemia in a gerbil model of ischemic tolerance,” J. Cereb. Blood Flow Metab., 145, 60–70 (1995).

    Google Scholar 

  37. H. Kato, Y. Liu, T. Araki, and K. Kogure, “Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemia in the gerbil: cumulative damage and protective effects,” Brain Res., 553, 238–242 (1991).

    Google Scholar 

  38. H. Kato, Y. Liu, T. Araki, and K. Kogure, “MK-801 (but not anisomycin) inhibits the induction of tolerance to ischemia in gerbil hippocampus,” Neurosci. Lett., 139, 118–121 (1992).

    Google Scholar 

  39. M. S. Kindy, J. P. Carney, R. J. Dempsey, and J. M. Carney, “Ischemic induction of protooncogene expression in the gerbil brain,” J. Mol. Neurosci., 2, No. 4, 217–228 (1991).

    Google Scholar 

  40. T. Kirino, Y. Tsujita, and A. Tamura, “Induced tolerance to ischemia in gerbil hippocampal neurons,” J. Cereb. Blood Flow Metab., 11, 199–307 (1991).

    Google Scholar 

  41. K. Kitagawa, M. Matsumoto, and M. Tgaya, “'Ischemic tolerance' phenomenon found in the brain,” Brain Res., 528, 21–24 (1990).

    Google Scholar 

  42. W. J. Koroshetz and J. V. Bonventre, “Heat shock response in the central nervous system,” Experientia, 50, No. 11-12, 1085–1091 (1994).

    Google Scholar 

  43. S. Krajewski, J. K. Mai, M. Krajewska, M. Sikorska, M. J. Mossakowski, and J. C. Reed, “Up-regulation of Bax protein levels in neurons following cerebral ischemia,” J. Neurosci., 15, 6364–6376 (1995).

    Google Scholar 

  44. Y. Li, M. Chopp, J. H. Garcia, Y. Yoshida, Z. G. Zhang, and S. R. Levine, “Distribution of the 72-kDa heat-shock protein as a function of transient focal cerebral ischemia in the rat,” Stroke, 23, 1292–1298 (1992).

    Google Scholar 

  45. M. D. Linnik, P. Zahos, M. D. Geschwind, and H. J. Federoff, “Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia,” Stroke, 26, 1670–1674 (1995).

    Google Scholar 

  46. Z. W. Liu and J. C. Fowler, “Phorbol ester alters rat hippocampal neurons response to hypoxia,” Neuroreport, 6, No. 15, 2069–1072 (1995).

    Google Scholar 

  47. Y. Liu, H. Kato, N. Nakata, and K. Kogure, “Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus,” Neuroscience, 56, No. 4, 921–927 (1993).

    Google Scholar 

  48. J. C. Martinou, M. Dubois-Dauhin, and J. K. Staple, “Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia,” Neuron, 13, 1017–1030 (1994).

    Google Scholar 

  49. I. Martinou, M. Missotten, and P. A. Fernandez, “Bax and Bak proteins require caspase activity to trigger apoptosis in sympathetic neurons,” Neuroreport, 9, No. 1, 15–19 (1998).

    Google Scholar 

  50. K. P. Mayfield and L. G. D'Alecy, “Role of endogenous opioid peptides in the acute adaptation to hypoxia,” Brain Res., 582, No. 2, 226–231 (1992).

    Google Scholar 

  51. K. P. Mayfield, W. Kozak, G. M. Malvin, and F. Porreca, “Hypoxia increases opioid delta receptor expression in mouse brain,” Neurosci., 72, No. 3, 785–789 (1996).

    Google Scholar 

  52. K. Miyashita, H. Abe, and T. Nakajima, “Induction of ischemic tolerance in gerbil hippocampus by pretreatment with focal ischemia,” Neuroreport, 6, 46–48 (1994).

    Google Scholar 

  53. C. E. Murray, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, 74, 1124–1136 (1986).

    Google Scholar 

  54. N. Nakata, H. Kato, and K. Kogure, “Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil,” Brain Res., 605, 354–356 (1993).

    Google Scholar 

  55. T. S. Nowak, J. Ikeda, and T. Nakajima, “70-kDa heat shock protein and c-fos gene expression after transient ischemia,” Stroke, 21, No. 11, Supplement, III107–III111 (1990).

    Google Scholar 

  56. T. Ohtski, M. Matsumoto, and K. Kuwabara, “Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons,” Brain Res., 599, 246–252 (1992).

    Google Scholar 

  57. K. L. Pannizon, D. Shin, S. Frautschy, and R. A. Walljs, “Neuroprotection with Bcl-2(20-34) peptide against trauma,” Neuroreport, 9, No. 18, 4131–4136 (1998).

    Google Scholar 

  58. S. Papas, V. Crepel, and Y. Ben-Ary, “The NMDA receptor contributes to anoxic aglycemic induced irreversible inhibition of synaptic transmission,” Brain Res., 607, No. 1-2, 54–60 (1993).

    Google Scholar 

  59. P. A. Pechan, T. Yoshida, and N. Panahian, “Genetically modified fibroblasts producing NGF protect hippocampal neurons after ischemia in the rat,” Neuroreport, 6, No. 4, 669–672 (1995).

    Google Scholar 

  60. H. R. Pelham, “Heat shock and the sorting of luminal ER proteins,” EMBO J., 8, No. 11, 3171–3176 (1989).

    Google Scholar 

  61. R. Rader, G. B. Watson, and T. N. Lanthorn, “Pharmacological characterization of the persistent depolarization induced by experimental ischemia,” Soc. Neurosci. Abstr., 14, 189 (1988).

    Google Scholar 

  62. K. A. Reimer, C. E. Murray, I. Yamasawa, M. L. Hili, and R. B. Jennings, “Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis,” Am. J. Physiol., 251, H1306–H1316 (1986).

    Google Scholar 

  63. F. Ritossa, “A new puffing pattern induced by temperature shock and DNP in Drosophila,” Experientia, 18, 571–573 (1962).

    Google Scholar 

  64. M. Sasahira, T. Lowry, R. P. Simon, and D. A. Greenberg, “Epileptic tolerance: prior seizures protect against seizure-induced neuronal injury,” Neurosci. Lett., 185, 95–98 (1995).

    Google Scholar 

  65. R. Schlingensiepen, H. Terlau, W. Brysch, and K. H. Schlingensiepen, “Differential expression of c-jun, jun B, and jun D in rat hippocampal slices,” Neuroreport, 6, No. 1, 101–104 (1994).

    Google Scholar 

  66. A. Schlurr, K. H. Reid, and M. T. Tseng, “Adaptation of adult brain tissue to anoxia and hypoxia in vitro,” Brain Res., 374, No. 2, 244–248 (1986).

    Google Scholar 

  67. T. Shigeno, T. Mima, and K. Takakura, “Amelioration of delayed neuronal death in the hippocampus by nerve growth factor,” J. Neurosci., 11, 2914–2919 (1991).

    Google Scholar 

  68. K. Shimazaki, A. Ishida, and N. Kawai, “Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus,” Neurosci. Res., 20, 95–99 (1994).

    Google Scholar 

  69. B. K. Siesjo and F. Bengtsson, “Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis,” J. Cereb. Blood Flow Metab., 9, No. 2, 127–140 (1989).

    Google Scholar 

  70. R. P. Simon, H. Cho, R. Gwinn, and D. H. Lowentein, “The temporal profile of 72-kDa heat-shock protein expression following global ischemia,” J. Neurosci., 11, 881–889 (1991).

    Google Scholar 

  71. J. L. Swain, R. L. Davina, J. J. Hines, J. Greenfield, Jr., and E. W. Holmes, “Repetitive episodes of brief ischemia (12 min) do not produce accumulative depletion of high energy phosphate compounds,” Cardiovasc. Res., 18, 264–269 (1984).

    Google Scholar 

  72. M. Szatkowski and D. Attwell, “Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms,” Trends Neurosci., 17, No. 9, 359–365 (1994).

    Google Scholar 

  73. G. Tomasevic, M. Shamloo, D. Israel, and T. Wieloch, “Activation of p53 and its target genes p21 (WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning,” Mol. Brain Res., 70, No. 2, 304–313 (1999).

    Google Scholar 

  74. A. Tortosa, R. Blanco, and I. Ferrer, “Bcl-2 and Bax protein expression in neurofibrillary tangles in progressive supranuclear palsy,” Neuroreport, 9, No. 6, 1049–1052 (1998).

    Google Scholar 

  75. Y. Uemura, N. M. Kowall, and M. Moskowitz, “Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex,” Brain Res., 552, No. 1, 99–105 (1991).

    Google Scholar 

  76. F. A. Welsh, D. J. Moyer, and V. A. Harris, “Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain,” J. Cereb. Blood Flow Metab., 12, 204–212 (1992).

    Google Scholar 

  77. D. Wu and W M. Partridge, “Neuroprotection with noninvasive delivery to the brain,” Neurobiology, 96, 254–259 (1999).

    Google Scholar 

  78. M. Yassin and C. N. Scholfield, “NMDA antagonists increase recovery of evoked potentials from slices of rat olfactory cortex after anoxia,” Brit. J. Pharmacol., 111, No. 4, 1221–1227 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilov, M.O., Lazarevich, E.V., Semenov, D.G. et al. The Adaptive Effects of Hypoxic Preconditioning of Brain Neurons. Neurosci Behav Physiol 33, 1–11 (2003). https://doi.org/10.1023/A:1021119112927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021119112927

Navigation