Skip to main content
Log in

Ptolemaic Transformation in Keplerian Problem

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We propose the Ptolemaic transformation: a canonical change of variables reducing the Keplerian motion to the form of a perturbed Hamiltonian problem. As a solution of the unperturbed case, the Ptolemaic variables define an intermediary orbit, accurate up to the first power of eccentricity, like in the kinematic model of Claudius Ptolemy. In order to normalize the perturbed Hamiltonian we modify the recurrent Lie series algorithm of HoriuuMersman. The modified algorithm accounts for the loss of a term's order during the evaluation of a Poisson bracket, and thus can be also applied in resonance problems. The normalized Hamiltonian consists of a single Keplerian term; the mean Ptolemaic variables occur to be trivial, linear functions of the Delaunay actions and angles. The generator of the transformation may serve to expand various functions in Poisson series of eccentricity and mean anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breiter, S. and Métris, M.: 1994, 'Keplerian expansions in terms of Henrard's practical variables', Celest. Mech. & Dyn. Astr. 58, 237uu244.

    Google Scholar 

  • Deprit, A.: 1969, 'Canonical transformations depending on a small parameter', Celest. Mech. 1, 12uu30.

    Google Scholar 

  • Deprit, A. and Rom, A.: 1970, 'Characteristic exponents at L4 in the elliptic restricted problem', Astron. & Astrophys. 5, 416uu425.

    Google Scholar 

  • Deprit, A., Henrard, J. and Rom, A.: 1971, 'Analytical lunar ephemeris. I. Definition of the main problem', Astron. & Astrophys. 10, 257uu269.

    Google Scholar 

  • Ferraz-Mello, S.: 1997, 'On Hamiltonian averaging theories and resonance', Celest. Mech. & Dyn. Astr. 66, 39uu50.

    Google Scholar 

  • Henrard, J.: 1970, 'Perturbation technique in the theory of nonlinear oscillations and in celestial mechanics', Boeing Scientific Research Laboratories, Mathematical and Information Sciences Report No 44.

  • Henrard, J.: 1974, 'Virtual singularities in the artificial satellite theory', Celest. Mech. 10, 437uu450.

    Google Scholar 

  • Henrard, J.: 2000, 'A note on a general algorithm for two-body expansions', Celest. Mech. & Dyn. Astr. 76, 283uu289.

    Google Scholar 

  • Hori, G.-I.: 1966, 'Theory of general perturbations with unspecified canonical variables', Publ. Astron. Soc. Jap. 18, 287uu296.

    Google Scholar 

  • Idelson, N. I.: 1975, Etudes on the History of Celestial Mechanics (in Russian), Nauka, Moskva, pp. 141uu147.

    Google Scholar 

  • Mersman, W. A.: 1970, 'A new algorithm for the Lie transformation', Celest. Mech. 3, 81uu89.

    Google Scholar 

  • Oberti, P.: 1994, 'The main problem of geosynchronous satellite theory around an equilibrium position', Astron. & Astrophys. 284, 281uu284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breiter, S., Métris, G. Ptolemaic Transformation in Keplerian Problem. Celestial Mechanics and Dynamical Astronomy 84, 319–330 (2002). https://doi.org/10.1023/A:1021110830797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021110830797

Navigation