Experimental observations and computer simulations of spherical aluminum-alloy projectiles impacting plane limestone targets

Abstract

The stress distribution within spherical aluminum-alloy (2024) projectiles impacting plane limestone (calcite) targets was observed by converting residual microhardness maps obtained for cross-sections of recovered projectiles impacting from 0.8 to 1.3 km/s. A maximum residual yield stress zone was observed to migrate toward the rear of the impacting projectiles with increasing impact velocity. The maximum occurred at a normalized depth z′/a m ≅ 0.5 (where a m is the contact radius); consistent with the theoretical result for elastic impacts. Computer simulations showed good agreement with experiment, and demonstrated that elastic assumptions were valid well into the plastic deformation regime.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. K. IVES and A. W. RUFF, ASTM Spec. Tech. Publication 664 (ASTM, Philadelphia, PA, 1979) p. 5.

    Google Scholar 

  2. 2.

    D. KUHLMANN-WILSDORF and L. K. IVES, Wear 85 (1983)361.

    Google Scholar 

  3. 3.

    A. KARIMI, M. MAAMOURI and J. L. MARTIN, Mater. Sci. Engng. A 113 (1989)287. 5206

    Google Scholar 

  4. 4.

    M. GUAGLIANO, J. Mater. Processing Tech. 110 (2001) 277.

    Google Scholar 

  5. 5.

    S.A. QUINONES and L. E. MURR, Phys. Stat. Sol(a) 166 (1998) 763.

    Google Scholar 

  6. 6.

    C. KENNEDY and L.E. MURR, Mater. Sci. Engng. A 325 (2002) 131.

    Google Scholar 

  7. 7.

    O. L. VALERIO, V. S. HERNANDEZ, S.A. QUINONES, L. E. MURR and F. HÖRZ, in “Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, ” edited by K. P. Staudhammer, L. E. Murr and M. A. Meyers (Elsevier Science, Amsterdam, 2001) ch. 49, p. 383.

    Google Scholar 

  8. 8.

    F. I. GRACE, in “Fundamental Issues and Applications ofShock-Wave and High-Strain-Rate Phenomena, ” edited by K. P. Staudhammer, L. E. Murr and M. A. Meyers (Elsevier, Amsterdam, 2001) ch. 54, p. 421.

    Google Scholar 

  9. 9.

    J. C. LASALVIA, E. J. HORWATH, E.J. RAPACKI, C. J. SHIH and M. A. MEYERS, in “Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, ” edited by K. P. Staudhammer, L. E. Murr and M. A. Meyers (Elsevier, Amsterdam, 2001) ch. 56, p. 437.

    Google Scholar 

  10. 10.

    H. HERTZ, J.f.d.reine u.angew. Mathematik 92 (1918) 156.

    Google Scholar 

  11. 11.

    A. E.H. LOVE, “The Mathematical Theory of Elasticity” (Dover, New York, 1927) p. 138.

    Google Scholar 

  12. 12.

    R.M. DAVIES, Proc. Roy. Soc. A 197 (1949) 416.

    Google Scholar 

  13. 13.

    S. TIMOSHENKO and J. H. GOODIER, “Theory of Elasticity” 2nd ed. (McGraw-Hill, New York, 1951).

    Google Scholar 

  14. 14.

    D. KUHLMANN-WILSDORF, L.K. IVES and A. W. RUFF, in Proc. 6th Int. Conf. on Erosion by Liquid and Solid Impact, edited by J. E. Field and N. S. Corney, Royal Air Force Establishment, Farnborough, Hants, England, September, 1983, p. 42-1.

    Google Scholar 

  15. 15.

    M. A. MEYERS, Dynamic Behavior of Materials” (J. Wiley & Sons, New York, 1994).

    Google Scholar 

  16. 16.

    M. VONTHIEL, A. S. KUSUBOV and A. C. MITCHELL, “Compendium of Shock-Wave Data, UCRC-50108, ” Vol. 1,Supp.1 (Lawrence Radiation Laboratory, University of California, Livermore, CA, 1987).

    Google Scholar 

  17. 17.

    J.A. TYBURCZY and T. J. AHRENS, J. Geophys. Res. 92 (1986) 4730.

    Google Scholar 

  18. 18.

    B. A. IVANOV and A. DEUTSCH, Planetary Sci. XXXII (2001) 1740.

    Google Scholar 

  19. 19.

    J. E. FIELD, Wear 233–235 (1999)1.

    Google Scholar 

  20. 20.

    D. R. ANDREWS and J. E. FIELD, J. Phys. D: Appl. Phys. 15 (1982) 571. Received 18March and accepted 4 September 2002 5207

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Randrianarivony, F.M., Lair, S., Quinones, S.A. et al. Experimental observations and computer simulations of spherical aluminum-alloy projectiles impacting plane limestone targets. Journal of Materials Science 37, 5197–5207 (2002). https://doi.org/10.1023/A:1021083800238

Download citation

Keywords

  • Polymer
  • Calcite
  • Plastic Deformation
  • Computer Simulation
  • Stress Distribution