Skip to main content
Log in

Intercalation and Superconductivity in Molecular Crystals

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Intercalating polyatomic molecules into a superconductor can noticeably affect the properties of the compound. We propose a mechanism leading to a large increase in T c for such systems. The enhancement of T c is related to the additional pairing interaction arising from the interaction of electrons with the vibrational manifold of the molecules. One immediate prediction of the model is the possibility to observe a site-selective isotope effect. The proposed mechanism explains the recent observation of high-T c superconductivity in hole-doped intercalated fullerides. The value of T c for the C 60 ⋅ 2 CHBr3 compound is calculated withouth any adjustable parameter. The theory also suggests that intercalating CHI3 would further increase the critical temperature to T c ≃ 140 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Kresin, Sov. Phys.-Doklady 10, 1194(1966).

    Google Scholar 

  2. F. Meunier, J. P. Burger, G. Deutscher, and E. Guyon, Phys. Lett. 26A, 309(1968).

    Google Scholar 

  3. M. B. Robin, K. Andres, T. H. Geballe, N. A. Kuebler, and D. B. McWhan, Phys. Rev. Lett. 17, 917(1966).

    Google Scholar 

  4. V. Z. Kresin, Phys. Lett. 49A, 117(1974).

    Google Scholar 

  5. J. H. Schön, Ch. Kloc, and B. Batlogg, Science 293, 2432(2001).

    Google Scholar 

  6. R. E. Dinnebier, O. Gunnarsson, H. Brumm, E. Koch, P. W. Stephens, A. Huq, and M. Jansen, Science 296, 109(2002).

    Google Scholar 

  7. A. Bill and V. Z. Kresin, Eur. Phys. J. B 26, 3(2002).

    Google Scholar 

  8. A. Hebard, Physics Today 45, 26(1992).

    Google Scholar 

  9. O. Gunnarsson, Rev. of Mod. Phys. 69, 575(1997)

    Google Scholar 

  10. O. Gunnarsson, E. Koch, and R. Martin, in Pair Correlations in Many-Fermion Systems, V. Z. Kresin, ed. (Plenum, New York, 1998), p. 155.

    Google Scholar 

  11. W. E. Pickett, Sol. State Phys. 48, 225(1994)

    Google Scholar 

  12. L. Degiorgi, Adv. Phys. 47, 207(1998)

    Google Scholar 

  13. L. Forró and L. Mihály, Rep. Prog. Phys. 64, 649(2001).

    Google Scholar 

  14. J. H. Schön, Ch. Kloc, and B. Batlogg, Nature 408, 549(2000).

    Google Scholar 

  15. J. H. Schön, S. Berg, Ch. Kloc, and B. Batlogg, Science 287, 1022(2000)

    Google Scholar 

  16. J. H. Schön, H. Meng, and Z. Bao, Nature 413, 713(2001).

    Google Scholar 

  17. G. Brumfield, Nature 417, 367and 473 (2002)

    Google Scholar 

  18. R. F. Service, Science 297, 1377and 1584 (2002).

    Google Scholar 

  19. A. Abrikosov, L. Gor'kov, and I. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, (Dover, New York, 1963).

    Google Scholar 

  20. M. Schlüter, M. Lannoo, M. Needels, G. A. Baraff, and D. Tománek, J. Phys. Chem. Solids, 53, 1473(1992).

    Google Scholar 

  21. C. M. Varma, J. Zaanen, and K. Raghavachari, Science 254, 989(1991).

    Google Scholar 

  22. R. Windiks, A. Bill, B. Delley, and V. Z. Kresin, preprint.

  23. G. Herzberg, Molecular Spectra and Molecular Structure. II. Infared and Raman Spectra of Polyatomic Molecules (D. Van Nostrad, Princeton, 1964).

    Google Scholar 

  24. W. McMillan, Phys. Rev. 187, 331(1968).

    Google Scholar 

  25. B. Matthias, G. Stewart, A. Giorgi, J. Smith, Z. Fisk, and H. Barz, Science 208, 401(1980).

    Google Scholar 

  26. R. J. H. Clark, O. H. Ellestad, and R. Escribano, Molec. Phys. 31, 65(1976)

    Google Scholar 

  27. K. H. Schmidt and A. Müller, J. Molec. Spectrosc. 50, 115(1974).

    Google Scholar 

  28. J. P. Franck, in Physical Properties of High-Temperature Super-conductors IV, D. M. Ginsberg, ed. (World Scientific, Singapor, 1994), p. 189.

    Google Scholar 

  29. P. Dawson and B. J. Berenblut, Spectrochim. Acta 31A, 1049(1975)

    Google Scholar 

  30. N. Neto, O. Oehler, and R. M. Hexter, J. Chem. Phys. 58, 5661(1973).

    Google Scholar 

  31. J. H. Schön, Ch. Kloc, R. C. Haddon, and B. Batlogg, Science 288, 656(2000).

    Google Scholar 

  32. C. C. Chancey and M. C. M. O'Brien, The Jahn-Teller Effect in C 60 and other Icosahedral Complexes (Princeton University Press, New Jersey, 1997).

    Google Scholar 

  33. G. Onida and G. Benedek, Europhys. Lett. 18, 403(1992) and therein.

    Google Scholar 

  34. W. McMillan and J. Rowell, inSuperconductivity, R. Parks, ed. (Decker, New York, 1969), Vol. 1, p. 56.

    Google Scholar 

  35. J. H. Schön, private communication.

  36. B. T. Geilikman, Sov. Phys.-Usp. 8, 2032(1966)

    Google Scholar 

  37. B. T. Geilikman, Sov. Phys.-Usp. 16, 17(1973).

    Google Scholar 

  38. A. Bill, H. Morawitz, and V. Z. Kresin J. Low Temp. Phys. 117, 283(1999); preprint.

    Google Scholar 

  39. S. P. Karna, M. Dupuis, E. Perrin, and P. N. Prasad, J. Chem. Phys. 92, 7418(1990)

    Google Scholar 

  40. R. Kobayashi, R. D. Amos, H. Koch, and P. Jorgensen, Chem. Phys. Lett. 253, 373(1996); we are grateful to H. Bill for bringing our attention to these papers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bill, A., Kresin, V.Z. Intercalation and Superconductivity in Molecular Crystals. Journal of Superconductivity 15, 489–494 (2002). https://doi.org/10.1023/A:1021075709538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021075709538

Navigation