, Volume 478, Issue 1–3, pp 29–51 | Cite as

Restoration of salt marshes in the Netherlands

  • J.P. Bakker
  • P. Esselink
  • K.S. Dijkema
  • W.E. van Duin
  • D.J. de Jong


The conquest of land from the sea has been a long tradition in the Netherlands. When salt marshes were high enough, they were embanked when it was economically feasible, and transformed into intensively exploited agricultural land. This resulted in the transformation of halophytic communities to glycophytic communities. Often as an alternative, a low levee, a summerdike was built, which greatly reduced the flooding frequency of the landward summerpolder, hence creating a sedimentation deficit therein. Such summerpolders now cover 1200 ha in the Netherlands, 2100 ha in NW-Germany and small areas in England. Due to continuous embankments, the present salt-marsh area is relatively small with respect to the tidal basins. Discussions have been started how to increase the salt-marsh area. Two options will be discussed, firstly de-embankment of summerpolders and maintenance of the protective seawall, secondly increase of the effects of saline seepage behind the seawall by top soil removal. Both options include the restoration of salt-marsh communities (target communities) in intensively agriculturally exploited sites that have been salt marshes before. From the few examples abroad and experiments it is discussed (1) to which extent the sedimentation deficit in summerpolders could be compensated for, (2) if the soil seed bank is likely to contribute to re-establishment of salt-marsh communities, (3) if the dispersal of propagules of halophytic plants will be possible by hydrochory when the summerdike is breached, (4) to what extent is dispersal by endozoochory through waterfowl important in case re-establishment in a saline seepage area behind the seawall without open connection to the sea is envisaged. Two case studies of de-embanked summerpolders in the Netherlands revealed that the sedimentation deficit can be counteracted by rapid sedimentation, provided enough transport is possible from the foreshore. Dispersal by incoming tidal water from the nearby salt-marsh source area into the target area is possible for many salt-marsh plant species. The rate of success seems to depend on the relative position of source area and target area. A case study in a saline seepage area after top soil removal in the Netherlands, showed that the number of viable seeds dispersed by droppings from waterfowl is limited. Hence the possibilities for restoration of inland halophytic plant communities seem much lower than after de-embankment of summerpolders.

salt marsh summerpolder restoration vegetation seed dispersal The Netherlands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, P., 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge.Google Scholar
  2. Allen, J. R. L. & K. Pye, 1992. Coastal salt marshes: their nature and importance. In Allen, J. R. L. & K. Pye (eds), Salt Marshes, Morphodynamics, Conservation and Engineering Significance. Cambridge University Press, Cambridge: 1–18.Google Scholar
  3. Andresen, H., J. P. Bakker, M. Brongers, B. Heydemann & U. Irmler, 1990. Long-term chnages of salt marsh communities by cattle grazing. Vegetatio 89: 137–148.Google Scholar
  4. Armstrong, W., E. J. Wright, S. Lythe & T. J. Gaynard, 1985. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 73: 323–339.Google Scholar
  5. Bakker, J. P., 1989. Nature Management by Grazing and Cutting. Kluwer Academic Publishers, Dordrecht.Google Scholar
  6. Bakker, J. P., M. Dijkstra & P. T. Russchen, 1985. Dispersal, germination and early establishment of halophytes and glycophytes on a grazed and abandoned salt marsh gradient. New Phytol. 101: 291–308.Google Scholar
  7. Bakker, J. P., J. De Leeuw, K. S. Dijkema, P. C. Leendertse, H. H. T. Prins & J. Rozema, 1993. Salt marshes along the coast of the Netherlands. Hydrobiologia 265: 73–95.Google Scholar
  8. Bakker, J. P., P. Esselink, R. van der Wal & K. S. Dijkema, 1997. Options for restoration and management of coastal salt marshes in Europe. In Urbanska, L.M., N. R. Webb & P. J. Edwards (eds), Restoration Ecology and Sustainable Development. Cambridge University Press, Cambridge: 286–322.Google Scholar
  9. Bakker, J. P., A. P. Grootjans, M. Hermy & P. Poschlod, 2000. How to define targets for ecological restoration? Appl. Veg. Sci. 3: 3–6.Google Scholar
  10. Bakker, J. P., G. van den Brink, G. L. Verweij & P. Esselink, 2001. Zaadvoorrad en dispersie bij een proefverkweldering in Noord-Fryslân Bûtendijks. De Levende Natuur. 102: 19–23 (in Dutch).Google Scholar
  11. Bazelmans, J., D. Gerrets & P. Vos, 1998. Zoden aan de dijk; kleinschalige dijkbouw in het Friesland van de Romeinse tijd. Noorderbreedte 22: 18-21 (in Dutch).Google Scholar
  12. Beeftink, W. G., 1977. The coastal salt marshes of Western and Northern Europe: an ecological and phytosociological approach. In Chapman, V. J. (ed.), Ecosystems of the World I. Wet Coastal Systems. Elsevier, Amsterdam: 109–155.Google Scholar
  13. Beeftink, W. G., P. De Bruin, S. Jelgersma, J. A. Trimpe-Burger, P. J. van der Feen, J. Visser & W. J. Wolff, 1982. Geschiedenis. In Duursma, E. K., H. Engel & T. J. M. Martens (eds), De Nederlandse Delta. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam: 15–77 (in Dutch).Google Scholar
  14. Behre, K. E., 1979. Zur Rekonstruktion ehemaliger Pflanzengesellschaften an der Deutschen Nordseeküste. In Wilmanns, O. & R. Tüxen (eds), Werden und Vergehen von Pflanzengesellschaften. Cramer, Vaduz: 181–214.Google Scholar
  15. Behre, K. E., 1985. Die ursprungliche Vegetation in den deutschen Marschgebieten und deren Veränderung durch prähistorische Besiedlung und Meeresspiegelbewegungen. Verh. Gesellsch. für Ökologie 13: 85–96.Google Scholar
  16. Bekker, R. M., J. P. Bakker, U. Grandin, R. Kalamees, P. Milberg, P. Poschlod, K. Thompson & J. H. Willems, 1998. Seed shape and vertical distribution in the soil: indicators for seed longevity. Funct. Ecol. 12: 834–842.Google Scholar
  17. Bernhardt, K. G., 1992. Besiedlungsstrategieen an sandigen Extremstandorten im Tidebereich. Flora 187: 272–281.Google Scholar
  18. Bernhardt, K. G., 1998. Auswirkungen der Widerzulassung von Ñberflutungsdynamik auf die Vegetation und Pflanzenpopulation im Grünlandkomplex 'Karrendorfer Wiesen' bei Greifswald. Schriftenreihe für Landschaftspflege und Naturschutz 56: 251–262.Google Scholar
  19. Bernhardt, K. F., J. Tesmer, C. Ruth & H. Schurbohm, 1996. Die Vegetation der Karrendorfer Wiesen-Inventarisierung des Zustandes 1994-1995. Natur un Naturschutz in Mecklenburg-Vorpommern 32: 85–100.Google Scholar
  20. Boorman, L. A., 1999. Salt marshes-present functioning and future change. Mangroves and Salt Marshes 3: 227–241.Google Scholar
  21. Boorman, L. A., J. D. Goss-Custard & S. McGrorty, 1989. Climatic change, rising sea level and the British coast. HMSO, London. Natural Environm. Res. Council. ITE Research Publication 1: 1–24.Google Scholar
  22. Boorman, L. & J. Hazelden, 1996. New marshes for old: saltmarsh creation in Sussex, England. Ocean Challenge 6: 34–37.Google Scholar
  23. Boumans, R. M. J. & J. W. Day Jr, 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion-table. Estuaries 16: 375–380.Google Scholar
  24. Cappers, R. T. J., 1994. Botanical macro-remains of vascular plants of the Heveskesklooster terp (The Netherlands) as tools to characterize the past environment. Palaeohistoria 36: 107–167.Google Scholar
  25. De Jong, D. J. & A. M. van der Pluijm, 1994. Consequences of a tidal reduction for the salt-marsh vegetation in the Oosterschelde estuary (The Netherlands). Hydrobiologia 282/283: 317–333.Google Scholar
  26. De Jong, F., J. F. Bakker, C. J. M. van Berkel, K. Dahl, N. M. J. A. Dankers, C. Gättje, H. Marencic & P. Potel, 2000. 1999 Wadden Sea Quality Status Report. Common Wadden Sea Secretariat, Wilhelmshaven.Google Scholar
  27. De Leeuw, J., L. A. Apon, P. J. Herman, W. De Munck & W. G. Beeftink, 1994. The response of salt marsh vegetation to tidal reduction caused by the Oosterschelde storm-surge barrier. Hydrobiologia 282/283: 335–353.Google Scholar
  28. De Vlaming, V. & V. Proctor, 1968. Dispersal of aquatic organisms: viability of seeds recovered from droppings of captive kildeer and mallard ducks. Am. J. Bot. 55: 20–26.Google Scholar
  29. De Vries, V., 1961. Vegetatiestudie op de Westpunt van Vlieland. PhD.Thesis, University of Amsterdam (in Dutch).Google Scholar
  30. Dankers, N., M. Binsbergen, K. Zegers, R. Laane & M. Van Der Loeff, 1984. Transportation of water, particulate and dissolved organic matter between a salt marsh and the Ems-Dollard Estuary, The Netherlands. Estuar. coast. shelf Sci. 19: 143–165.Google Scholar
  31. Dieckmann, R., 1988. Entwicklung der Vörländer an der nordfriesischen Festlandküste. Wasser & Boden 40: 146–150.Google Scholar
  32. Dijkema, K. S., 1983. Use and management of mainland marshes and Halligen. In Dijkema, K. S. & W. J. Wolff (eds), Flora and Vegetation of the Wadden Sea Islands and Coastal Areas. Report 9 of the Wadden SeaWorking Group. Rotterdam, Balkema: 302–312.Google Scholar
  33. Dijkema, K. S., 1984. Salt Marshes in Europe. Council of Europe, Strasbourg.Google Scholar
  34. Dijkema, K. S., 1987. Changes in salt-marsh area in the Netherlands Wadden Sea after 1600. In Huiskes, A. H. L., C. W. P. M. Blom & J. Rozema (eds), Vegetation Between Land and Sea. Dr W. Junk Publishers, Dordrecht: 42–49.Google Scholar
  35. Dijkema, K. S., 1990. Salt and brackish marshes around the Baltic Sea and adjacent parts of the North Sea; their development and management. Biol. Conserv. 51: 191–209.Google Scholar
  36. Dijkema, K. S., 1994. Auswirkung des Meeresspiegelanstieges auf die Salzwiesen. In Lozán, J. J., E. Rachor, K. Reise, H. van Westernhagen & W. Lenz (eds), Warnsignale aus dem Wattenmeer. Blackwell, Berlin: 196–200.Google Scholar
  37. Dijkema, K. S., 1997. Impact prognosis for salt marshes from subsidence by gas extraction in the Wadden Sea. J. Coast. Res. 13: 1294–1304.Google Scholar
  38. Dijkema, K. S., J. Van Den Bergs, J. H. Bossinade, P. Bouwsema, R. J. De Glopper & J. W. T. M. Van Meegen, 1988. Effecten van rijshouten dammen op de opslibbing en de omvang van de vegetatiezones in de Friese en Groninger landaanwinningswerken. Rijkswaterstaat Directie Groningen. Nota GRAN 1988-2010, RIN-report 88/66, RIJP-report 988-33 Cbw, 1–119 (in Dutch).Google Scholar
  39. Dijkema, K. S., J. H. Bossinade, P. Bouwsema & R. J. De Glopper, 1990. Salt marshes in the Netherlands Wadden Sea: rising high tide levels and accretion enhancement. In Beukema, J. J., W. J. Wolff & J. J. W. H. Brouns (eds), Expected Effects of Climatic Change on Marine Coastal Ecosystems. Kluwer Academic Publishers, Dordrecht: 173–188.Google Scholar
  40. Ehlers, J., K. Nagorny, P. Schmidt, B. Stieve & K. Zietlow, 1993. Storm surge deposits in North Sea salt marshes dated by 134Cs and 137Cs determination. J. Coast. Res. 6: 698–701.Google Scholar
  41. Erchinger, H. F., H.-G. Coldewey & C. Meyer, 1996. Interdisciplinäre Erforschung dis deichvorlandes in Forschunpsvorhaben ‘Erosionsfestigkeit von Hellern’. Die Küste 58: 1–45.Google Scholar
  42. Esselink, P., 2000. Nature management of coastal salt marshes; interactions between anthropogenic influences and natural dynamics. PhD.Thesis, University of Groningen.Google Scholar
  43. Esselink, P., K. S. Dijkema, S. Reents & G. Hageman, 1998. Vertical accretion and marsh-profile development in man-made tidal marshes after abandonment. J. Coast. Res. 14: 570–582.Google Scholar
  44. Esselink, P., K. S. Dijkema & L. F. M. Fresco, 2002. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage. Appl. Veg. Sci. (in press).Google Scholar
  45. Gerlach, A., T. Brüning & K. Brüning, 1999. Untersuchung zur Zusammensetzung und Herkunft von Getreibsel ('Teek') an der niedersächsischen Nordseeküste. Internal Report Carl von Ossietzky-Universität Oldenburg.Google Scholar
  46. Houthuesen, Y., 1994. Mogelijkheid voor het creëren van een brak-zout milieu in de Emmapolder. Internal Report, Vereniging Natuurmonumenten, 's-Graveland (in Dutch).Google Scholar
  47. Houwing, E. J., W. E. Van Duin, Y. Smit-Van Der Waaij, K. S. Dijkema & J. H. J. Terwindt, 1999. Biological and abiotic factors influencing the settlement and survival of Salicornia dolichostachya in the intertidal pioneer zone. Mangroves and Salt Marshes 3: 197–206.Google Scholar
  48. Huiskes, A.H. L., B. P. Koutstaal, P. M. J. Herman, W.G. Beeftink, M. M. Markusse & W. De Munck, 1995. Seed dispersal of halophytes in tidal salt marshes. J. Ecol. 83: 559–567.Google Scholar
  49. Hutchings, M. J. & P. J. Russell, 1989. The seed regeneration dynamics of an emergent salt marsh. J. Ecol. 77: 615–637.Google Scholar
  50. Jakobson, B., 1954. The tidal area in South-Western Jutland and the process of the salt marsh formation. Geografisk Tidsskrift 53: 49–61.Google Scholar
  51. Jefferies, R. L., A. J. Davy & T. Rudmik, 1981. Population biology of the salt marsh annual Salicornia europaea agg. J. Ecol. 69: 17–31.Google Scholar
  52. Knol, E., 1993. De Nederlandse kustlanden in de Vroege Middeleeuwen. PhD. Thesis, Free University, Amsterdam (in Dutch).Google Scholar
  53. Koutstaal, B. P., M. M. Markusse & W. DeMunck, 1987. Aspects of seed dispersal by tidal movements. In Huiskes, A. H. L., C.W. P. M. Blom & J. Rozema (eds), Vegetation Between Land and Sea. Dr W. Junk Publishers, Dordrecht: 226–233.Google Scholar
  54. Krijger, G. M., 1993. Het Verdronken Land van Saeftinghe komt weer boven water. DGW, werkdocument GWWS-93.838x, Middelburg (in Dutch).Google Scholar
  55. Milton, W. E. J., 1939. The occurrence of buried viable seeds in soils at different elevations and on a salt marsh. J. Ecol. 27: 149–159.Google Scholar
  56. Müller-Motzfeld, G., 1997. Renaturierung eines Ñberflutungsgrünlandes an der Ostseeküste. Schriftenreihe für Landschaftpflege und Naturschutz 54: 239–263.Google Scholar
  57. Norris, K., T. Cook, B. O'Dowd & C. Durdin, 1997. The density of redshank Tringa totanus breeding on the salt-marshes of the Wash in relation to habitat and its grazing management. J. appl. Ecol. 34: 999–1013.Google Scholar
  58. Olff, H., J. De Leeuw, J. P. Bakker, R. J. Platerink, H. J. van Wijnen & W. de Munck, 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea-level rise and silt deposition along an elevational gradient. J. Ecol. 85: 799–814.Google Scholar
  59. Olney, P. J. S., 1963. The food and feeding habits of teal Anas crecca L. Proc. Zool. Soc. London 140: 169–210.Google Scholar
  60. Oost, A. P. & P. L. de Boer, 1994. Sedimentology and development of barrier islands, ebb-tidal deltas, inlets and backbarrier areas of the Dutch Wadden Sea. Senckenbergiana maritima 24: 65–115.Google Scholar
  61. Persicke, U., A. Gerlach & W. Heiber, 1999. Zur botanische Zusammensetzung von Treibsel der niedersächsischen Deichvorländer und Deichabschnitte. Drosera '99: 23–34.Google Scholar
  62. Portnoy, J. W. & A. E. Giblin, 1997A. Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry 36: 275–303.Google Scholar
  63. Portnoy, J. W. & A. E. Giblin, 1997B. Biogeochemical effects of seawater restoration to diked salt marshes. Ecol. Appl. 7: 1054–1063.Google Scholar
  64. Proctor, V. W., 1968. Long-distance dispersal of seeds by retention in the digestive tract of birds. Science 160: 321–322.Google Scholar
  65. Reed, D. J., 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay Louisiana: the role of winter storms. Estuaries 12: 222–227.Google Scholar
  66. Roman, C. T., W. A. Niering & R. S. Warren, 1984. Salt marsh vegetation change in response to tidal restriction. Envir. Manage. 8: 141–150.Google Scholar
  67. Roman, C. T., R. W. Garvine & J. W. Portnoy, 1995. Hydrologic modelling as a predictive basis for ecological restoration of salt marshes. Envir. Manage. 19: 559–566.Google Scholar
  68. Scherfose, V., 1990. Salz-Zeigerwerte von Gefässpflanzen der Salzmarschen, Tideröhrichte und Salzwassertümpel and der Deutschen Nord-und Ostseeküste. Jahresbericht 1987. Forschungsstelle Küste Norderney 39: 31–83.Google Scholar
  69. Schultz, W., 1987. Einfluss der Beweidung von Salzwiesen auf die Vogelfauna. In Kempf, N., J. Lamp & P. Prokosch (eds), Salzwiesen: geformt von Küstenschutz, Landwirtschaft oder Natur? WWF-Deutschland, Husum: 255–270.Google Scholar
  70. Siira, J., 1970. Studies on the ecology of the seashore meadows of the Bothnian Bay with special reference to the Liminka area. Aquilo Ser. Bot. 9: 1–109.Google Scholar
  71. Stapel, J. & D. J. de Jong, 1998. Sedimentatieveranderingen op het schor bijWaarde en het Verdronken Land van Saeftinge, Westerschelde (ZW Nederland). Report RIKZ-98.022, Middelburg (in Dutch).Google Scholar
  72. Stikvoort, E. & B. De Winder, 1998. Sieperdaschor, van polder naar schor. Interim-evaluatie 1990-1996. RIKZ-report 98.002, Middelburg (in Dutch).Google Scholar
  73. Stratingh, G. A. & C. A. Venema, 1855. De Dollard. Oomkens, Zoon & Schierbeek, Groningen (in Dutch).Google Scholar
  74. Strykstra, R. J., D. M. Pegtel & A. Bergsma, 1998. Dispersal distance and achene quality of the rare anemochorous species Arnica montana L.: implications for conservation. Acta Bot. Neerl. 47: 45–56.Google Scholar
  75. Stumpf, R. P., 1983. The process of sedimentation on the surface of a salt marsh. Est. coast. shelf Sci. 17: 495–508.Google Scholar
  76. Taayke, E., 1996. Die einheimische Keramik der nördlichen Niederlande, 600 v. Chr. Bis 300 n. Chr., Teil V: Ñbersicht und Schlussfolgerungen. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek (BROB) 42: 163–208.Google Scholar
  77. Ter Heerdt, G. N. J., G. L. Verweij, R. M. Bekker & J. P. Bakker, 1996. An improved method for seed bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10: 144–151.Google Scholar
  78. Thompson, K., J. P. Bakker & R. M. Bekker, 1997. Soil Seed Banks of NW Europe: Methodology, Density and Longevity. Cambridge University Press, Cambridge.Google Scholar
  79. Thompson, K., J. P. Bakker, R. M. Bekker & J. G. Hodgson, 1998. Ecological correlates of seed persistence in soil in the NW European flora. J. Ecol. 86: 163–169.Google Scholar
  80. Ungar, I. A. & T. E. Riehl, 1980. The effect of feed reserves on species composition in zonal halophyte communities. Bot. Gaz. 141: 447–452.Google Scholar
  81. Ungar, I. A., 1988. A significant seed bank for Spergularia marina (Caryophyllaceae). Ohio J. Sci. 88: 200–202.Google Scholar
  82. Van de Koppel, J., J. Huisman, C. F. R. van der Wal & H. Olff, 1996. Patterns of herbivory along a productivity gradient: an empirical and theoretical investigation. Ecology 77: 736–745.Google Scholar
  83. Van der Wal, R., S. van Lieshout, D. Bos & R. H. Drent, 2000. Are spring staging brent geese evicted by vegetation succession? Ecography 23: 60–69.Google Scholar
  84. Van Duin, W. E., K. S. Dijkema & J. Zegers, 1997. Veranderingen in bodemhoogte (opslibbing, erosie en inklink) in de Peazemerlannen. IBN-report 326, Wageningen (in Dutch).Google Scholar
  85. Van Zeist, W., 1974. Palaeobotanical studies of settlement sites in the coastal area of the Netherlands. Palaeohistoria 16: 223–371.Google Scholar
  86. Van Wijnen, H. J., 1999. Nitrogen dynamics and vegetation succession in salt marshes. PhD.Thesis, University of Groningen.Google Scholar
  87. Verhoeven, A. G., 1938. Fixation des terres alluviales. Congrès International Géographie. Amsterdam. Excursion A: Zeeland: 101–137.Google Scholar
  88. Vestergaard, P., 1997. Possible impact of sea-level rise on some habitat types at the Baltic coast of Denmark. J. Coast. Conserv. 3: 103–112.Google Scholar
  89. Waisel, Y., 1972. Biology of Halophytes. Academic Press, New York.Google Scholar
  90. Waterbolk, H. T., 1976. Oude bewoning in het Waddengebied. In Abrahamse, J., W. Joenje & N. Van Leeuwen-Seelt (eds), Waddenzee. Landelijke Vereniging tot Behoud van de Waddenzee, Harlingen / 's-Graveland: Natuurmonumenten, 's-Graveland: 210–222 (in Dutch).Google Scholar
  91. Warren, R. S. & W. A. Niering, 1989. Vegetation change on a Northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74: 96–103.Google Scholar
  92. Westhoff, V., 1985. Nature management in coastal areas of Western Europe. Vegetatio 62: 523–532.Google Scholar
  93. Wolfram, C., U. Hörcher, D. Lorenzen, R. Neuhaus, E. Aegerter & K. Dierssen, (....). Vegetation succession in a salt-water lagoon in the polder Beltringharder Koog/German Wadden Sea. In White, P. S., L. Mincina & J. Lepš (eds), Proceedings of the 41st IAVS Symposium, Opulus Press, Uppsala.Google Scholar
  94. Zobel, M., E. Van Der Maarel & C. Dupré, 1998. Species pool: the concept, its determination and significance for community restoration. Appl. Veg. Sci. 1: 55–66.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J.P. Bakker
    • 1
  • P. Esselink
    • 2
  • K.S. Dijkema
    • 3
  • W.E. van Duin
    • 3
  • D.J. de Jong
    • 4
  1. 1.Laboratory of Plant EcologyUniversity of GroningenHarenThe Netherlands
  2. 2.Koeman & Bijkerk bv, Ecological Research and ConsultancyHarenThe Netherlands
  3. 3.ALTERRA, Green World ResearchDen Burg, TexelThe Netherlands
  4. 4.National Institute for Coastal and Marine Management/RIKZMiddelburgThe Netherlands

Personalised recommendations