Skip to main content
Log in

Temperature Evolution During Radiative Gravitational Collapse

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the evolution of the temperature profile of a Friedmann-like collapsing sphere undergoing dissipative gravitational collapse in the form of a radial heat flux. We further consider the behavior of the star close to quasi-static equilibrium (weak heat flux approximation) and show that relaxational effects cannot be ignored. It is explicitly shown that extended irreversible thermodynamics predict a higher temperature at all interior points of the stellar configuration compared to the Eckart theory. These results carry over to the weak heat flux approximation with the magnitude of the temperature being lower than the full radiating model. The stability of the model after its departure from equilibrium is studied by considering the behavior of the “control parameter” throughout the stellar interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anile, A. M., Pavon, D., and Romano, V. (1998).Preprint: gr-qc/9810014.

  • Bonnor, W. B., de Oliveira, A. K. G.,and Santos, N. O. (1989). Radiating spherical collapse Physics Reports 181, 269.

    Google Scholar 

  • Chan, R., Lemos, J. P. S., and Santos, N. O.(1989). Friedmann-like collapsing radiating sphere. Astrophysical Journal 342, 976.

    Google Scholar 

  • Di Prisco, A., Herrera, L., and Esculpi, M. (1996). Radiating gravitational collapse before relaxation. Classical and Quantum Gravity 13, 1053.

    Google Scholar 

  • Govender, M., Maartens, R., and Maharaj, S. D. (1999).Relaxational effects in radiating stellar collapse. Monthly Notices of the Royal Astronomical Society 310, 557.

    Google Scholar 

  • Govender, M., Maharaj, S. D., and Maartens, R. (1998). A causalmodel of radiating gravitational collapse, Classical and Quantum Gravity 15, 323.

    Google Scholar 

  • Govinder, K. S. and Govender, M. (2001). Causal solutions forradiating stellar collapse. Phyics Letters A 283, 71.

    Google Scholar 

  • Grammenos, T. (1994). Thermodynamics of a model of nonadiabaticspherical gravitational collapse. Applied Spectroscopy 211, 31.

    Google Scholar 

  • Herrera, L., Di Prisco, A., Hernandez-Pastora, J., Martin, J., and Martinez, J. (1997). Thermal conduction in systems out of hydrostatic equilibrium. Classical and Quantum Gravity 14, 2239.

    Google Scholar 

  • Herrera, L., Di Prisco, A., and Pavon, D. (2000). Measuringstrength of dissipative inflation. General Relativity and Gravitation 32, 2091.

    Google Scholar 

  • Herrera, L. and Martinez, J. (1997). On the critical behaviour of aheat-conducting fluid out of hydrostatic equilibrium. Classical and Quantum Gravity 14, 2697.

    Google Scholar 

  • Herrera, L. and Martinez, J. (1998). Dissipative fluids out ofhydrostatic equilibrium. Classical and Quantum Gravity 15, 407.

    Google Scholar 

  • Israel, W. and Stewart, J. M. (1976). Thermodynamics ofnonstationary and transient effects in a relativistic gas. Physics Letters A 58, 213.

    Google Scholar 

  • Kolassis, C. A., Santos, N. O., and Tsoubelis, D. (1988). Friedmann-like collapsing model of a radiating sphere with heat flow. Astrophysical Journal 327, 755.

    Google Scholar 

  • Santos, N. O. (1985). Non-adiabatic radiating collapse. Monthly Notices of the Royal Astronomical Society 216, 403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Govender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govender, M., Govinder, K.S. Temperature Evolution During Radiative Gravitational Collapse. International Journal of Theoretical Physics 41, 1979–1990 (2002). https://doi.org/10.1023/A:1021065125876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021065125876

Navigation