Cellular and Molecular Neurobiology

, Volume 22, Issue 4, pp 407–416 | Cite as

Microarray Analysis of Neural Stem Cell Differentiation in the Striatum of the Fetal Rat

  • Tieqiao Wen
  • Ping Gu
  • Todd A. Minning
  • Qi Wu
  • Min Liu
  • Fuxue Chen
  • Hao Liu
  • Haihua Huang
Article

Abstract

1. Gene expression profiles in neural stem cell differentiation in vitro were determined by cDNA microarray analysis.

2. Total RNA was extracted and reverse transcripted into cDNA from differentiated and undifferentiated neural stem cells. The 33P labeled cDNA was hybridized with a cDNA microarray consisting of 14,000 human genes.

3. The results showed that a total of 1406 genes were differentially expressed, of which 148 genes exhibited more than twofold differences. Some genes were obviously activated while others were strongly repressed. These changes in gene expression suggest that differentiation is regulated by different genes at different expressional levels. By biological classification, the differentially expressed genes were divided into four functional categories: molecular function, biological process, cellular component, and new functional genes or ESTs.

4. These findings will be a valuable contribution for gene expression profiling and elucidation of neural stem cell differentiation mechanisms.

microarray neural stem cells differentiation striatum rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amoureux, M.C., Cunningham, B. A., Edelman, G. M., and Crossin, K. L. (2000). N-CAMbinding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype. J. Neurosci. 20:3631–3640.Google Scholar
  2. Aronow, B. J., Richardson, B. D., and Handwerger S. (2001). Microarray analysis of trophoblast differentiation: Gene expression reprogramming in key gene function categories. Physiol. Genomics 6:105–116.Google Scholar
  3. Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D., and Goldman, S. A. (2001). Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci 21:6718–31.Google Scholar
  4. Bonni, A., Yi, S., Nadal-Vicens, M., Bhatt, A., Frank, D. A., Rozovsky, I., Stahl, N., Yancopoulos, G.D., and Greenberg, M. E. (1997). Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483.Google Scholar
  5. Dietz, A. B., Bulur, P. A., Knutson, G. J., Matasic, R., and Vuk-Pavlovic, S. (2000). Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem. Biophys. Res. Commun. 275:731–738.Google Scholar
  6. Eisen, M.B., Spellman, P. T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genomewide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95:14863–14868.Google Scholar
  7. El-Bitar, F., Bamdad, M., Dastugue, B., and Meiniel, A. (2001). Effects of SCO-spondin thrombospondin type 1 repeats (TSR) in comparison to Reissner's fiber material on the differentiation of the B104 neuroblastoma cell line. Cell Tissue Res. 304:361–369.Google Scholar
  8. Fernandez-Llebrez, P., Hernandez, S., and Andrades, J. A. (2001). Immunocytochemical detection of Reissner's fiber-like glycoproteins in the subcommissural organ and the floor plate of wildtype and cyclops mutant zebrafish larvae. Cell Tissue Res. 305:115–120.Google Scholar
  9. Francescangeli, E., Lang, D., Dreyfus, H., Boila, A., Freysz, L., and Goracci, G. (1997). Activities of enzymes involved in the metabolism of platelet-activating factor in neural cell cultures during proliferation and differentiation. Neurochem Res. 10:1299–1307.Google Scholar
  10. Gadient, R. A., Lein, P., Higgins, D., Patterson, P. H. (1998). Effect of leukemia inhibitory factor (LIF) on the morphology and survival of cultured hippocampal neurons and glial cells. Brain Res. 798:140–146.Google Scholar
  11. Gage, F. H. (2000). Mammalian neural stem cells. Science 287:1433–1438.Google Scholar
  12. Geschwind, D. H., Ou, J., Easterday, M. C., Dougherty, J. D., Jackson, R. L., Chen, Z., Antoine, H., Terskikh, A., Weissman, I. L., Nelson, S. F., and Kornblum, H. I. (2001). A genetic analysis of neural progenitor differentiation. Neuron 29:325–339.Google Scholar
  13. Hughes, S. M., Lillien, L. E., Raff, M. C., Rohrer, H., and Sendtner, M. (1988). Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature 335:70–73.Google Scholar
  14. Kaplanski, C., Pauley, C. J., Griffiths, T. G., Kawabata, T. T., and Ledwith, B. J. (2000). Differentiation of rat oval cells after activation of peroxisome proliferator-activated receptor alpha43. Cancer Res. 60:580–587.Google Scholar
  15. Kelly, D. L., and Rizzino, A. (2000).DNAmicroarray analyses of genes regulated during the differentiation of embryonic stem cells. Mol. Reprod. Dev. 56:113–23.Google Scholar
  16. Koblar, S. A., Turnley, A. M., Classon, B. J., Reid, K. L., Ware, C. B., Cheema, S. S., Murphy, M., and Bartlett, P. F. (1998). Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl. Acad. Sci. U.S.A. 95:3178–3181.Google Scholar
  17. Liu, S. Y., Zhang, K. C., and Yang, H. (2000). Isolation, incubation and identification of neural stem cells in rats. J. Third Mil. Med. Niv. 22:26–28.Google Scholar
  18. Marmur, R., Kessler, J. A., Zhu, G., Gokhan, S., and Mehler, M. F. (1998). Differentiation of oligodendroglial progenitors derived from cortical multipotent cells requires extrinsic signals including activation of gp130/LIFbeta receptors. J. Neurosci. 18:9800–9811.Google Scholar
  19. Mu, X., Zhao, S., Pershad, R., Hsieh, T. F., Scarpa, A., Wang, S. W., White, R. A., Beremand, P. D., Thomas, T. L., Gan, L., Klein, W. H. (2001). Gene expression in the developing mouse retina by EST sequencing and microarray analysis. Nucleic Acids Res. 29: 4983–4993.Google Scholar
  20. Pincus, D., Harrison, C., Goodman, R., Edgar, M., Keyoung, H. M., Fraser, R., Nedergaard, M., and Goldman, S. A. (1998). FGF2/BDNF-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43:576–585.Google Scholar
  21. Sally, T. (2001). The development of neural stem cells. Nature 414:112–117.Google Scholar
  22. Satoh, M., Sugino, H., and Yoshida, T. (2000). Activin promotes astrocytic differentiation of a multipotent neural stem cell line and an astrocyte progenitor cell line from murine central nervous system. Neurosci. Lett. 284:143–146.Google Scholar
  23. Shimazaki, T., Shingo, T., and Weiss, S. (2001). The ciliary neurotrophic factor/leukemia inhibitory factor/ gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci. 21:7642–7653.Google Scholar
  24. Stier, H., Fahimi, H. D., Van Veldhoven, P. P., Mannaerts, G. P., Volkl, A., Baumgart, E. (1998). Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): Possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha).Differentiation 64:55–66.Google Scholar
  25. Suelves, M., Lopez-Alemany, R., Lluis, F., Aniorte, G., Serrano, E., Parra, M., Carmeliet, P., and Munoz-Canoves, P. (2002). Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99:2835–2844.Google Scholar
  26. Taylor, M. V. (2002). Muscle differentiation: How two cells become one. Curr. Biol. 12:R224–R228.Google Scholar
  27. Tropepe, V., Sibilia, M., Curuna, B.G., Rossant, J., Wagner, E. F., and Kooy, D.V.D. (1999). Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse. Dev. Biol. 208:166–188.Google Scholar
  28. Tsoukatos, D. C., Liapikos, T. A., Tselepis, A. D., Chapman, M. J., and Ninio, E. (2001). Plateletactivating factor acetylhydrolase and transacetylase activities in human plasma low-density lipoprotein. Biochem. J. 357:457–464.Google Scholar
  29. van der Kooy, D., and Weiss, S. (2000).Why stem cells? Science 287:1439–1441.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Tieqiao Wen
    • 1
    • 2
  • Ping Gu
    • 1
  • Todd A. Minning
    • 2
  • Qi Wu
    • 2
  • Min Liu
    • 2
  • Fuxue Chen
    • 3
  • Hao Liu
    • 3
  • Haihua Huang
    • 3
  1. 1.Laboratory of Neural Molecular Biology, School of Life SciencesShanghai UniversityShanghaiPeople's Republic of China
  2. 2.Department of Cellular BiologyUniversity of GeorgiaGeorgia
  3. 3.Laboratory of Neural Molecular Biology, School of Life SciencesShanghai UniversityShanghaiPeople's Republic of China

Personalised recommendations