Skip to main content
Log in

Behavioral and Electrophysiological Responses of Natural Enemies to Synomones from Tea Shoots and Kairomones from Tea Aphids, Toxoptera aurantii

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Olfactometer bioassays and electrophysiological studies showed that the lacewing, Chrysopa sinica, the aphid parasitoid, Aphidius sp., and the coccinellid, Coccinella septempunctata, all responded to volatiles from tea aphids, Toxoptera aurantii, to hexane or ether rinses of tea aphid cuticles, and to synomones released by aphid-damaged tea shoots, as well as to the tea shoot–aphid complex. Each natural enemy spent more time searching on a filter paper treated with tea aphid honeydew than on a blank control filter paper. The interaction between synomones from aphid-damaged shoots and kairomones from tea aphids enhanced the responses to the plant–host complex. There was a significant, logistic dose–response relationship between the number of natural enemies responding and the odor stimulus concentration. Volatile components from the plant–host complex, obtained by air entrainment, were identified by their mass spectra and retention times and confirmed by comparison with standard samples. These were (Z)-3-hexen-1-ol, benzaldehyde, (E)-2-hexenal, (Z)-3-hexenyl acetate, ocimene, linalool, geraniol, indole, and (E)-2-hexenoic acid. The main components in a hexane rinse from tea aphid cuticle were benzaldehyde, undecane, 2,5-hexanedione, 2,5-dihydrothiophene, linalool, 4-methyl-octane, and eicosane, whereas the main components from an ether rinse were (E)-2-hexenoic acid, heptadecane, pentadecane, eicosane, tetratetracontane, and nonadecane. Benzaldehyde elicited the strongest responses from natural enemies in the olfactometer and the largest electroantennogram (EAG) responses. While the amount of odor was small, Coccinella septempunctata was slightly more sensitive than Chrysopa sinica and Aphidius sp. An increase in doses of benzaldehyde, (E)-2-hexenal, and (Z)-3-hexenyl acetate caused the EAG responses of each natural enemy to decrease. When the doses of (Z)-3-hexen-1-ol, linalool, and geranoil increased, EAGs of Chrysopa sinica and Aphidius sp. increased, but EAGs of Coccinella septempunctata decreased. When the dose of indole increased, EAGs of Coccinella septempunctata decreased, but those of Aphidius sp. increased. This study demonstrates that tea shoot–aphid complexes emit volatile synomones, while the odors from tea aphids, aphid cuticle extracts, and tea aphid honeydew contain kairomones, to which the natural enemies show a logistic dose–response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Bakthavatsalam, N., Singh, S. P., Tandon, P. L., Chaudhary, M., and Preethi, S. 1999. Behavioural responses of key parasitoids of Opisina arenosellaWalker (Lepidoptera: Noctuidae) to the kairomones. J. Biol. Control 13:7–14. 2218 HAN AND CHEN

    Google Scholar 

  • Bakthavatsalam, N. and Singh, S. P. 1996. L-tryptophan as an ovipositional attractant for Chrysoperlacarned (Stephens) (Neuroptera: Chrysopidae). J. Biol.Control 10:21–22.

    Google Scholar 

  • Bouchard, Y. and Cloutier, C. 1984. Honeydew as a source of host-searching kairomones for the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae).Can. J. Zool. 62:1513–1520.

    Google Scholar 

  • Budenberg, W. J. and Powell, W. 1992. The role of honeydew as an ovipositional stimulant for two species of syrphids. Entomol. Exp. Appl. 64:57–61.

    Google Scholar 

  • Carter, M. C. and Dixon, A. F. G. 1984. Honeydew: an arrestant stimulus for coccinellids. Ecol. Entomol. 9:383–387.

    Google Scholar 

  • Das, S. C. and Kakoty, N. N. 1992. Biological studies on tea aphids, Toxoptera aurantii Boyer, and its natural enemy complex. Two A Bud 39:29–33.

    Google Scholar 

  • Davis, R. H. and Nahrstedt, A. 1985. Cyanogenesis in insects, pp. 635, in G. A. Kerkui and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Pergamon Press, Oxford.

    Google Scholar 

  • Dicke, M. 1994. Local and systemic production of volatiles herbivore-induced terpenoids: Their role in plant–carnivore mutualism. J. Plant Physiol. 143:465–472.

    Google Scholar 

  • Du, Y. J., Poppy, G. M., and Powell, W. 1996. Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J. Chem. Ecol. 22:1591–1605.

    Google Scholar 

  • Du, Y. J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1368.

    Google Scholar 

  • Duffey, S. S. 1981. Cyanide and arthropods, p. 385, in B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley, F. Wissing. (eds.) Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • FrÖhlich, B., Tautz, J., and Riederer, M. 2000. Chemometric classification of comb and cuticular waxes of the honeybee Apis mellifera carnica. J. Chem. Ecol. 26:123–137.

    Google Scholar 

  • Guerrieri, E., Pennacchio, F., and Tremblay, E. 1993. Flight behaviour of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae) in response to plant and host volatiles. Eur. J. Entomol. 90:415–421.

    Google Scholar 

  • Guo, W. F., Sasak, N., and Fulcuda, M. 1998. Isolation of an aroma precursor of benzaldehyde from tea leaves (Camellia sinensis var. sinensis w. yabukita). Biosci. Biotechnol. Biochem. 62:2052–2054.

    Google Scholar 

  • Han, B. Y. 2002. Population dynamics of tea aphid, Toxoptera aurantii, and its natural enemies in tea garden. J. Tea Sci. 22(2).

  • Han, B. Y. and Chen, Z.M. 2000. Searching behavior of Coccinella septempunctata and four varieties of Leis axyridis adults on tea aphid honeydew and analysis of honeydew component. Acta Ecol. Sin. 20:495–501. (in Chinese with English Abstract).

    Google Scholar 

  • Han, B. Y., Zhang, Z. N., and Fang, Y. L. 2001. Electrophysiology and behavior feedback of diamondback moth, Plutella xylostella, to volatile secondary metabolites emitted by Chinese cabbage. Chin. Sci. Bull. 46:2086–2088.

    Google Scholar 

  • HÖsei, W. 1981. The enzymic hydrolysis of cyanogenic glucosides, p. 217, in B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley, and F. Wissing. (eds.). Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Knudsen, J. T., Tollsten, L., and Bergstrom, L. G. 1993. Floral scents-A checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–280.

    Google Scholar 

  • Koschier, E. H., Kogel, W. J. D., and Visser, J. H. 2000. Assessing the attractiveness of volatile plant compounds to western flower thript Frankliniella occidentalis. J. Chem. Ecol. 26:2643–2655.

    Google Scholar 

  • Liepert, C. and Dettner, K. 1996. Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. J. Chem. Ecol. 22:695–707.

    Google Scholar 

  • Li, Z. X., Chen, C. M., and Tang, M. Y. 1993. Host searching kairomones of Amitus longiconis Föster. Acta Entomol. Sin. 36:45–50 (in Chinese with English abstract). RESPONSES TO TEA SHOOTS AND APHIDS 2219

    Google Scholar 

  • Madhusudhan, V. V.,, Taylor, G. S., and Miles, P. W. 1994. The detection of salivary enzymes of phytophagous Hemiptera: a complication of methods. Ann. Appl. Biol. 124:404–412.

    Google Scholar 

  • Micha, S. G. and Wyss, U. 1995. The importance of plant odors for the host search of Aphidius uzbekistanicus (Hymenoptera, Aphidiidae), a parasitoid of the grain aphid (Sitobion avenae). Gesunde Pflanz. 47:300–307 (in German)

    Google Scholar 

  • Nahrstedt, A. 1985. Cyanogenic compounds as protecting agents for organisms. Plant Syst. Evol. 150:35–47.

    Google Scholar 

  • Ninkovic, V., Abassi, S. A., and Pettersson, J. 2001. The influence of aphid-induced plant volatiles on ladybird beetle searching behavior. Biol. Control 21:191–195.

    Google Scholar 

  • Powell, W., Pennacchio, F., Poppy, G. M., and Tremblay, E. 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control 11:104–112.

    Google Scholar 

  • Park, K. C., Elias, D., Donato, B., and Hardie, J. 2000. Electroantennogram and behavioural responses of different forms of the bird cherry-oat aphid, Rhopalosiphum padi, to sex pheromone and a plant volatile. J. Insect Physiol. 46:597–604.

    Google Scholar 

  • Reed, H. C., Tan, S. H., Haapanen, K., Killmon, M., Reed, D. K., and Elliott, N. C. 1995. Olfactory responses of the parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) to odor of plants, aphids, and plant-aphid complexes. J. Chem. Ecol. 21:407–418.

    Google Scholar 

  • Royer, L. and Boivin, G. 1999. Infochemicals mediating the foraging behavior of Aleochara bilineata Gyllenhal adults: sources of attractants. Entomol. Exp. Appl. 90:199–205.

    Google Scholar 

  • Seigler, D. S. 1981. Cyanogenic glucosides and lipids: strycture types and distribution, p. 133, in B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley, and F. Wissing. (eds.). Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Shaltiel, I. and Ayal, Y. 1998. The use of kairomones for foraging decisions by an aphid parasitoid in small host aggregations. Ecol. Entomol. 23:319–329.

    Google Scholar 

  • Sudoi, V. and Rotich, F. 1997. The rearing of hoverfly Xanthogramma aegyptium (Diptera: Syrphidae) for use as a biocontrol agent in controlling citrus aphids Toxoptera aurantii (Homoptera: Aphidae) in tea. Tea 18:42–44.

    Google Scholar 

  • Sudoi, V., Mwangi, J., and Kipsang, D. 1996. Preliminary survey of natural enemies of citrus aphid, Toxoptera aurantii, in tea Timbilil Estate. Tea 17:50–52.

    Google Scholar 

  • Tang, Q. Y. and Feng, M. G. 2000. Data Precessing System. Chinese Agricultural Press, Beijing.

    Google Scholar 

  • Teulon, D. A. J., Penman, D. R., and Ramarers, P. M. J. 1993. Volatiles chemicals for thrips (Thysanoptera: Thripidae) host finding and applications for thrips pest management. J. Econ. Entomol. 86:1405–1415.

    Google Scholar 

  • Turlings, T. C. J, Bernasconi, M., and Bertossa, R. 1998. The induction of volatiles in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol. Control 11:122–129.

    Google Scholar 

  • Vet, L. E. M., WÄckers, F. L., and Dicke, M. 1991. How to hunt for hiding hosts: the reliability–detectability problem in foraging parasitoids. Neth. J. Zool. 41:202–213.

    Google Scholar 

  • Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Google Scholar 

  • Visser, J. H. 1979. Electroantennogram responses of the Colorado beetle, Leptinotarsa decemlineata, to plant volatiles. Entomol. Exp. Appl. 25:86–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyu Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B., Chen, Z. Behavioral and Electrophysiological Responses of Natural Enemies to Synomones from Tea Shoots and Kairomones from Tea Aphids, Toxoptera aurantii . J Chem Ecol 28, 2203–2219 (2002). https://doi.org/10.1023/A:1021045231501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021045231501

Navigation