Skip to main content
Log in

Drosophila Choline Acetyltransferase Temperature-Sensitive Mutants

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We used the reverse transcription-polymerase chain reaction (RT-PCR) to amplify choline acetyltransferase (ChAT) mRNA fragments from two temperature-sensitive alleles of Drosophila melanogaster, Cha ts1 and Cha ts2. Single base substitutions in the mutants (T1614A in Cha ts1 and G1596A in Cha ts2) would result in amino acid changes for ChAT protein (Met403Lys in Cha ts1 and Arg397His in Cha ts2). These base substitutions were confirmed in mRNA extracted from homozygous mutants using a Single Nucleotide Primer Extension assay (SNuPE) and are sufficient to produce thermolabile enzyme. Our results indicate that these temperature-sensitive mutants are point mutations in the structural gene for ChAT. Using a quantitative SNuPE assay we also show that similar levels of Cha ts and wild type transcripts are present in heterozygous flies (Cha ts1/+ and Cha ts2 /+) at both restrictive and permissive temperatures. This contrasts with RNase protection assays of ChAT mRNA in homozygous mutant animals where the levels of mutant mRNA decrease at restrictive temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wu, D., and Hersh, L. B. 1994. Choline acetyltransferase: celebrating its fiftieth year. J Neurochem 62:1653–63.

    Google Scholar 

  2. Salvaterra, P. M., and Vaughn, J. E. 1989. Regulation of choline acetyltransferase. International Rev. Neurobiol. 31:81–143.

    Google Scholar 

  3. Bartus, R. T., Dean, R. L. d., Beer, B., Lippa, A. S. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–14.

    Google Scholar 

  4. Davies, P. 1983. The neurochemistry of Alzheimer's disease and senile dementia. Med Res Rev 3:221–36.

    Google Scholar 

  5. Itoh, N., Slemmon, J. R., Hawke, D. H., Williamson, R. H., Morita, E., Itakura, K., Roberts, E., Shively, J. E., Crawford, G. D., Salvaterra, P. M. 1986. Cloning of Drosophila choline acetyltransferase cDNA. Proc. Natl. Acad. Sci. USA 83:4081–4085.

    Google Scholar 

  6. Greenspan, R. J. 1980. Mutations of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J. Comp. Physiol. 137:83–92.

    Google Scholar 

  7. Tajima, T., Salvaterra, P. M. 1990. Sequence of choline acetyltransferase temperature-sensitive mutants determined by the polymerase chain reaction. Neuroscience 39:245–250.

    Google Scholar 

  8. Singer-Sam, J., LeBon, J. M., Dai, A., Riggs, A. D. 1992. A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Meth. Appl. 1:160–163.

    Google Scholar 

  9. Greenwood, A. D., Burke, D. T. 1996. Single nucleotide primer extension: quantitative range, variability, and multiplex analysis. Genome Res 6:336–48.

    Google Scholar 

  10. Kitamoto, T., Wang, W., Salvaterra, P. M. 1998. Structure and organization of the Drosophila cholinergic locus. J Biol Chem 273:2706–13.

    Google Scholar 

  11. Sugihara, H., Andrisani, V., Salvaterra, P. M. 1990. Drosophila choline acetyltransferase uses a non-AUG initiation codon and full length RNA is inefficiently translated. J. Biol. Chem. 265:21714–21719.

    Google Scholar 

  12. McCaman, R. E., Carbini, L., Maines, V., Salvaterra, P. M. 1988. Single RNA species injected into Xenopus oocyte directs the synthesis of active choline acetyltransferase. Molec. Brain Res. 3:107–114.

    Google Scholar 

  13. Salvaterra, P. M., McCaman, R. E. 1985. Choline acetyltransferase and acetylcholine levels in Drosophila melanogaster: A study using two temperature-sensitive mutants. J. Neurosci. 5:903–910.

    Google Scholar 

  14. Takagawa, K., Salvaterra, P. 1996. Analysis of choline acetyltransferase protein in temperature sensitive mutant flies using newly generated monoclonal antibody. Neurosci Res 24:237–43.

    Google Scholar 

  15. Sugihara, H., Andrisani, V., Salvaterra, P. M. 1991. Genomic organization of Drosophila choline acetyltransferase. J. Neurochem. 57:1636–1642.

    Google Scholar 

  16. Carbini, L. A., Hersh, L. B. 1993. Functional analysis of conserved histidines in choline acetyltransferase by site-directed mutagenesis. J Neurochem 61:247–53.

    Google Scholar 

  17. Gorczyca, M., Hall, J. C. 1984. Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. J Neurogenet 1:289–313.

    Google Scholar 

  18. Yasuyama, K., Kitamoto, T., Salvaterra, P. M. 1996. Differential regulation of choline acetyltransferase expression in adult Drosophila melanogaster brain. J Neurobiol 30:205–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Kitamoto, T. & Salvaterra, P.M. Drosophila Choline Acetyltransferase Temperature-Sensitive Mutants. Neurochem Res 24, 1081–1087 (1999). https://doi.org/10.1023/A:1021021213625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021021213625

Navigation