Skip to main content
Log in

Effects of Lead on Adenylate Cyclase Activity in Rat Cerebral Cortex

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lead decreased in a dose dependent manner the basal AC activity in membranes of rat cerebral cortex (IC50 = 2.5 ± 0.1 μM). In membranes preincubated under basal conditions, AC activity was stimulated by approximately two and fourfold by 10 μM Gpp(NH)p or forskolin, respectively. Under basal conditions, lead (3 μM) inhibited enzyme activity up to 50%, but was not able to inhibit the Gpp(NH)p- or the forskolin-stimulated AC activity. However, in membranes preincubated with Gpp(NH)p (10 μM), lead (3 μM) had no significant effect on enzyme activity, but it partly blocked the stimulation of AC activity elicited by forskolin (10 μM). In membranes preincubated with 10 μM lead, the addition of 10 μM Gpp(NH)p or forskolin in the incubation medium did not stimulate AC activity. However, when added together in the incubation medium Gpp(NH)p + forskolin produced an increase in enzyme activity. In membranes preincubated with 10 μM lead + 10 μM Gpp(NH)p, Gpp(NH)p (10 μM) or forskolin (10 μM) added alone or in combination to the incubation medium did not stimulate AC activity. Moreover, under these latter conditions lead had no further effect on enzyme activity. These results indicate that lead may interact with G-proteins and with the catalytic subunit of cerebral cortical AC to produce inhibition of the enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cory-Slechta, D. 1995. Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions. Ann. Rev. Pharmacol. Toxicol. 35:391–415.

    Google Scholar 

  2. Offermanns, S., and Schultz, G. 1994. Complex information processing by the transmembrane signaling system involving G-proteins. Naun. Sch. Arch. Pharmacol. 350:329–338.

    Google Scholar 

  3. Ando, S., Kametani, H., Osada, H., Iwamoto, M., and Kimura, N. 1987. Delayed memory dysfunction by transient hypoxia and its prevention by forskolin. Brain Res. 405:371–374.

    Google Scholar 

  4. Levitzki, A. 1987. Regulation of adenylate cyclase by hormones and G-proteins. FEBS Lett. 211:113–118.

    Google Scholar 

  5. Cooper, D. M. F., Mons, N., and Karpen, J. W. 1995. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424.

    Google Scholar 

  6. Helluevo, K., Hoffman, P. L., and Tabakoff, B. 1996. Adenylyl cyclases: mRNA and characteristics of enzyme activity in three areas of brain. J. Neurochem. 67:177–185.

    Google Scholar 

  7. Casperson, G. F., and Bourne, H. R. 1987. Biochemical and molecular genetic analysis of hormone-sensitive adenylyl cyclase. Ann. Rev. Pharmacol. Toxicol 27:371–384.

    Google Scholar 

  8. Gilman, A. G. 1987. G proteins: transducers of receptor-generated signals. Ann. Rev. Biochem. 56:615–649.

    Google Scholar 

  9. Lemmer, B., Carlebach, R., Stiller, M., Ohm, T. G., and Nitsch, R. 1991. Dose-dependent stimulation of adenylate cyclase in rat hippocampal tissue by isoprenaline, Gpp(NH)p and forskolin: lack of circadian phase-dependency. Brain. Res. 565:225–230.

    Google Scholar 

  10. Paz, M. M., Ramos, M., Ramírez, G., and Souza, D. 1994. Differential effects of guanine nucleotides on kainic acid binding and on adenylate cyclase activity in chick optic tectum. FEBS Letters 355:205–208.

    Google Scholar 

  11. Rius, R. A., Mollner, S., Pfeuffer, T., and Loh, Y. P. 1994. Developmental changes in Gs and G(olf) proteins and adenylyl cyclases in mouse brain membranes. Brain Res. 643:50–58.

    Google Scholar 

  12. Rubin, M. A., Medeiros, A. C., Rocha, P. C. B., Livi, C. B., Ramírez, G., and Souza, D. O. 1997. Effect of guanine nucleotides on [3H]glutamate binding and on adenylate cyclase activity in rat brain membranes. Neurochem. Res. 22:181–187.

    Google Scholar 

  13. Seamon, K. B., Padgett, W., and Daly, J. W. 1981. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A 78:3363–3367.

    Google Scholar 

  14. Gehlert, D. R. 1986. Regional modulation of [3H]forskolin binding in the rat brain by guanylyl-5′-imidodiphosphate and sodium fluoride: comparison with the distribution of guanine nucleotide binding sites. J. Pharmacol. Exp. Ther. 239:952–958.

    Google Scholar 

  15. Ruiz, J., Shi, Q. H., and Ho, R. J. 1986. A dose-response study of forskolin, stimulatory hormone, and guanosine triphosphate analog on adenylate cyclase from several sources. Arch. Biochem. Biophys. 251:139–147.

    Google Scholar 

  16. Sano, M., Kitajima, S., and Mizutani, A. 1983. Activation of adenylate cyclase by forskolin in rat brain and testis. Arch. Biochem. Biophys. 220:333–339.

    Google Scholar 

  17. Terman, B. I., Bitonti, A. J., Moss, J., and Vaughan, M. 1985. Activation and stabilization of the catalytic unit of adenylate cyclase. Biochem. J. 227:91–97.

    Google Scholar 

  18. Morris, S. A., and Bilezikian, J. P. 1983. Evidence that forskolin activates turkey erythrocyte adenylate cyclase through a noncatalytic site. Arch. Biochem. Biophys. 220:628–636.

    Google Scholar 

  19. Laurenza, A., Sutkowski, E. M., and Seamon, K. B. 1989. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol. Sci. 10:442–447.

    Google Scholar 

  20. Storm, D. R., and Gunsalus, R. P. 1974. Methylmercury is a potent inhibitor of membrane adenyl cyclase. Nature 250: 778–779.

    Google Scholar 

  21. Skurat, A. V., Yurkova, M. S., Baranova, L. A., Gulyaev, N. N., Bulargina, T. V., and Severin, E. S. 1985. Evidence for the existence of a sulfhydryl group in the adenylate cyclase active site. Biochem. Int. 10:451–461.

    Google Scholar 

  22. Takats, A., Binh, V. H., and Bertok, L. 1990. Potential role of SH groups in the radiosensitivity of adenylate cyclase. Acta Physiol. Hung. 76:265–272.

    Google Scholar 

  23. Nathanson, J. A., and Bloom, F. E. 1975. Lead-induced inhibition of brain adenyl cyclase. Nature 255:419–420.

    Google Scholar 

  24. Ewers, U., and Erbe, R. 1980. Effects of lead, cadmium and mercury on brain adenylate cyclase. Toxicology 16:227–237.

    Google Scholar 

  25. Sandhir, R., and Gill, K. D. 1994. Lead perturbs calmodulin dependent cyclic AMP metabolism in rat central nervous system. Biochem. Mol. Biol. Int. 33:729–742.

    Google Scholar 

  26. Souza, D. O., and Ramírez, G. 1991. Effects of guanine nucleotides on kainic acid binding and on adenylate cyclase in chick optic tectum and cerebellum. J. Mol. Neurosci. 3:39–45.

    Google Scholar 

  27. Albano, J. D. M., Barnes, G. D., Maudsley, D. V., Brown, B. L., and Ekins, R. P. 1974. Factors affecting the saturation assay of cyclic AMP in biological systems. Anal. Biochem. 60:130–141.

    Google Scholar 

  28. Tovey, K. C., Oldham, K. G., and Whelan, J. A. M. 1974. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin. Chim. Acta 56:221–234.

    Google Scholar 

  29. Huang, R. D., Smith, M. F., and Zahler, W. L. 1982. Inhibition of forskolin-activated adenylate cyclase by ethanol and other solvents. J. Cyclic Nucleotide Res. 8:385–394.

    Google Scholar 

  30. Gnonlonfoun, N., Mistry, P., and Berthon, G. 1991. Lead(II)-dithiothreitol equilibria and their potential influence on lead inhibition of 5-aminolevulinic acid dehydratase in in vitro assays. J Inorg. Biochem. 42:207–215.

    Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  32. Doskeland, S. O. 1980. Guanine nucleotides protect adenylate cyclase against inhibition by Pb2+. Biochim. Biophys. Acta 630:15–21.

    Google Scholar 

  33. Jett D. A., and Guilarte T. R. 1995. Developmental lead exposure alters N-methyl-D-aspartate and muscarinic cholinergic receptors in rat hippocampus: an autoradiographic study. Neurotoxicology 16:7–18.

    Google Scholar 

  34. Lundberg, U., Milanes, C. L., Pernalete, N., Weisinger, J. R., Contreras, N. E. I. R., Paz-Martinez, V., and Bellorin-Font, E. 1987. Effects of cadmium on canine renal cortical adenylate cyclase. Am. J. Physiol. 253:F401–F407.

    Google Scholar 

  35. Battaglia, G., Norman, A. B., Hess, E. J., and Creese, I. 1986. Forskolin potentiates the stimulation of rat striatal adenylate cyclase mediated by D-1 dopamine receptors, guanine nucleotides, and sodium fluoride. J. Neurochem. 46:1180–1185.

    Google Scholar 

  36. Kelly, E., Keen, M., Nobbs, P., and MacDermont, J. 1990. NaF and guanine nucleotides modulate adenylate cyclase activity in NG 108-15 cells by interacting with both Gs and Gi. Br. J. Pharmacol. 100:223–230.

    Google Scholar 

  37. Rodbell, M. 1992. The role of GTP-binding proteins in signal transduction: from the sublimely simple to the conceptually complex. Curr. Top. Cell. Reg. 32:1–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, A.L.S., Regner, A., Rubin, M.A. et al. Effects of Lead on Adenylate Cyclase Activity in Rat Cerebral Cortex. Neurochem Res 24, 1037–1042 (1999). https://doi.org/10.1023/A:1021008910900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021008910900

Navigation