Skip to main content
Log in

Energy Metabolism of Synaptosomal Subpopulations from Different Neuronal Systems of Rat Hippocampus: Effect of L-Acetylcarnitine Administration In Vivo

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The maximum rate (Vmax) of some enzyme activities related to glycolysis, Krebs' cycle, acetylcholine catabolism and amino acid metabolism were evaluated in different types of synaptosomes obtained from rat hippocampus. The enzyme characterization was performed on two synaptosomal populations defined as “large” and “small” synaptosomes, supposed to originate mainly from the granule cell glutamatergic mossy fiber endings and small cholinergic nerve endings mainly arising from septohippocampal fiber synapses, involved with cognitive processes. Thus, this is an unique model of pharmacological significance to study the selective action of drugs on energy metabolism of hippocampus and the sub-chronic i.p. treatement with L-acetylcarnitine at two different dose levels (30 and 60 mg · kg−1, 5 day a week, for 4 weeks) was performed. In control animals, the results indicate that these two hippocampal synaptosomal populations differ for the potential catalytic activities of enzymes of the main metabolic pathways related to energy metabolism. This energetic micro-heterogeneity may cause their different behaviour during both physiopathological events and pharmacological treatment, because of different sensitivity of neurons. Therefore, the micro-heterogeneity of brain synaptosomes must be considered when the effect of a pharmacological treatment is to be evaluated. In fact, the in vivo administration of L-acetylcarnitine affects some specific enzyme activities, suggesting a specific molecular trigger mode of action on citrate synthase (Krebs' cycle) and glutamate-pyruvate-transaminase (glutamate metabolism), but mainly of “small” synaptosomal populations, suggesting a specific synaptic trigger site of action. These observations on various types of hippocampal synaptosomes confirm their different metabolic machinery and their different sensitivity to pharmacological treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Swanson, L. W. 1983. The hippocampus and the concept of the limbic system. Pages 3–19, in Seifert, W., (ed.), Neurobiology of the Hippocampus, Academic Press, London, New York.

    Google Scholar 

  2. Andersen, P. 1983. Operational principles of hippocampal neurons: A summary of synaptic physiology. Pages 81–86, in Seifert, W., (ed.), Neurobiology of the Hippocampus, Academic Press, London, New York.

    Google Scholar 

  3. Matthews, D. A., Salvaterra, P. M., Crawford, G. D., Houser, C. R., and Vaughn, J. E. 1987. An immunocytochemical study of choline acetyltransferase-containing neurons and axon terminals in normal and partially deafferented hippocampal formation. Brain Res. 402:30–43.

    Google Scholar 

  4. Frotscher, M. 1983. Dendritic plasticity in response to partial deafferentation. Pages 65–80, in Seifert, W., (ed.), Neurobiology of the Hippocampus, Academic Press, London, New York.

    Google Scholar 

  5. Lapchak, P. A., Jenden, D. J., and Hefti, F. 1991. Compensatory elevation of acetylcholine synthesis in vivo by cholinergic neurons surviving partial lesions of the septohippocampal pathway. J. Neurosci. 11:2821–2828.

    Google Scholar 

  6. Schmidt-Kastner, R., and Freund, T. F. 1991. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636.

    Google Scholar 

  7. Ault, B., and Wang, C. M. 1986. Adenosine inhibits epilepti-form activity arising in hippocampal area CA3. Br. J. Pharmacol. 87:695–703.

    Google Scholar 

  8. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417.

    Google Scholar 

  9. Olton, D. S., and Wenk, G. L. 1987. Dementia: animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system. Pages 941–953, in Melzer, H. Y. (ed.), Psychopharmacology: the Third Generation of Progress, Raven Press, New York.

    Google Scholar 

  10. Lapchak, P. A., Araujo, D. M., and Quirion, R. 1989. Muscarinic and nicotinic receptors in Alzheimer's disease: rationale for cholinergic drUg treatment. Adv. Behav. Biol. 36:53–61.

    Google Scholar 

  11. Strong, R., Hicks, P., Hsu, L., Bartus, R. T., and Enna, S. J. 1980. Age related alterations in the rodent brain cholinergic system and behavior. Neurobiol. Aging 1:59–63.

    Google Scholar 

  12. Lippa, A. S., Critchett, D. J., Ehlert, F., Yamamura, H. I., Enna, S.J., and Bartus, R.T. 1981. Age-related alterations in neurotransmitter receptors: an electrophysiological and biochemical analysis. Neurobiol. Aging 2:3–8.

    Google Scholar 

  13. Villa, R. F., Arnaboldi, R., Ghigini, B., and Gorini, A. 1994. Parkinson-like disease by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) toxicity in Macaca Fascicularis: synaptosomal metabolism and action of dihydroergocriptine. Neurochem. Res. 19:229–236.

    Google Scholar 

  14. Israël, M., and Whittaker, V. P. 1965. The isolation of mossy fiber endings from the granular layer of the cerebellar cortex. Experientia 31:325–326.

    Google Scholar 

  15. Szutowicz, A., Harris, N. F., Srere, P. A., and Crawford, I. L. 1983. ATP-citrate lyase and other enzymes of acetyl-CoA metabolism in fractions of small and large synaptosomes from rat brain hippocampus and cerebellum. J. Neurochem. 41:1502–1505.

    Google Scholar 

  16. Crawford, I. L., and Connor, J. D. 1973. Localization and release of glutamic acid in relation to the hippocampal mossy fibre pathway. Nature 244:442–443.

    Google Scholar 

  17. Braitenberg, V., and Schüz, A. 1983. Some anatomical comments on the hippocampus. Pages 21–37, in Seifert, W. (ed.), Neurobiology of the Hippocampus, Academic Press, London, New York.

    Google Scholar 

  18. Whittaker, V. P. 1969. The synaptosomes. Vol. 2, pages 327–363, in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  19. Knull, H. R., Taylor, W. F., and Wells, W. W. 1973. Effect of energy metabolism on in vivo distribution of hexokinase in brain. J. Biol. Chem. 248:5414–5417.

    Google Scholar 

  20. Sugden, P. H., and Newsholme, E. A. 1975. The effect of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinase from muscle and nervous tissue of vertebrates and invertebrates. Biochem. J. 150:113–122.

    Google Scholar 

  21. Bergmeyer, H. U., and Bernt, E. 1974. Lactate dehydrogenase: UV-assay with pyruvate and NADH. Vol. 2, pages 574–579, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press, London, New York.

    Google Scholar 

  22. Sugden, P. H., and Newsholme, E. A. 1975. Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase in nervous tissues from vertebrates and invertebrates. Biochem. J. 150:105–111.

    Google Scholar 

  23. Ochoa, S. 1955. Malic dehydrogenase from pig heart. Vol. 6, pages 735–739, in Colowick, S. P., Kaplan, N. O. (eds.), Methods in Enzymology, Academic Press, London, New York.

    Google Scholar 

  24. Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. 1977. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J. Neurochem. 28:625–631.

    Google Scholar 

  25. Bergmeyer, H. U., and Bernt, E. 1974. Glutamate-pyruvate transaminase: UV-assay, manual method. Vol. 2, pages 752–758, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press, London, New York.

    Google Scholar 

  26. Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, L., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Villa, R. F., Gorini, A., Lo Faro, A., and Dell'Orbo, C. 1989. A critique on the preparation and enzymatic characterization of synaptic and nonsynaptic mitochondria from hippocampus. Cell. Mol. Neurobiol. 9:247–262.

    Google Scholar 

  29. Villa, R. F., Gorini, A., Geroldi, D., Lo Faro, A., and Dell'Orbo, C. 1989. Enzyme activities in perikaryal and synaptic mitochondrial fractions during development. Mech. Ageing Dev. 49:211–225.

    Google Scholar 

  30. Villa, R. F., and Gorini, A 1991. Enzyme mitochondrial systems during aging: pharmacological implications. Neuro. Chem. (Life Sci. Adv.) 10:49–59.

    Google Scholar 

  31. Villa, R. F., and Gorini, A 1991. Action of L-Acetylcarnitine on different cerebral mitochondrial populations from hippocampus and striatum during aging. Neurochem. Res. 16:1125–1132.

    Google Scholar 

  32. Benzi, G. 1983. Drug induced changes in some cerebral enzymatic activities related to energy transduction. Vol. 4, pages 531–542, in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Publishing Corporation, New York.

    Google Scholar 

  33. Benzi, G., Gorini, A., Ghigini, B., Arnaboldi, R., and Villa, R. F. 1993. Synaptosomal non-mitochondrial ATPase activities and drug treatment. Neurochem. Res. 18:719–726.

    Google Scholar 

  34. Villa, R. F., Gorini, A., Zanada, F., and Benzi, G. 1986. Action of L-acetylcarnitine on different cerebral mitochondrial populations from hippocampus. Arch. Int. Pharmacodyn. Ther. 279:195–211.

    Google Scholar 

  35. Villa, R. F., Arnaboldi, R., Gorini, A., and Geroldi, D. 1989. Action of piracetam and clonidine on different mitochondrial populations from hippocampus. Il Farmaco 44:215–226.

    Google Scholar 

  36. Benzi, G., Gorini, A., Arnaboldi, R., Ghigini, B., and Villa, R. F. 1993. Effect of intermittent mild hypoxia and drug treatment on synaptosomal nonmitochondrial ATPase activities. J. Neurosci. Res. 34:654–663.

    Google Scholar 

  37. Burton, K., and Krebs, H. A. 1953. The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis, and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosine-triphosphate. Biochem. J. 54:94–107.

    Google Scholar 

  38. Dennis, S. C., Lai, J. C. K., and Clark, J. B. 1977. Comparative studies on glutamate metabolism in synaptic and non-synaptic rat brain mitochondria. Biochem. J. 164:727–736.

    Google Scholar 

  39. Potashner, S. J. 1978. The spontaneous and electrically evoked release from slices of guinea pig cerebral cortex of endogenous amino acids labelled via metabolism of D-[U-14C]-glucose. J. Neurochem. 31:177–186.

    Google Scholar 

  40. Hamberger, A. C., Chiang, G. H., Nylén, E. S., Scheff, S. W., and Cotman, C. W. 1979. Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursor for the synthesis of preferentially released glutamate. Brain Res. 168:513–530.

    Google Scholar 

  41. Shank, R. P., and Aprison, M. H. 1979. Biochemical aspects of the neurotransmitter function of glutamate. Pages 139–150, in Filler, L. J. Jr.(ed): Glutamic acid: Advances in Biochemistry and Physiology. New York, Raven Press.

    Google Scholar 

  42. Shank, R. P., and Campbell, G. LeM. 1984. α-Ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle. J. Neurochem. 42:1153–1161.

    Google Scholar 

  43. Villa, R. F., and Benzi, G. 1975 Drugs and muscular pathways of pyruvate metabolism adapted to endurance training. Il Farmaco 30:311–316.

    Google Scholar 

  44. Erecinska, M., and Nelson, N. 1990. Activation of glutamate dehydrogenase by leucine and its non metabolizable analogue in rat brain synaptosomes. J. Neurochem. 54:1335–1343.

    Google Scholar 

  45. Gorini, A., D'Angelo, A., and Villa, R. F. 1998. Action of L-acetylcanitine on different mitochondrial populations from cerebral cortex. Neurochem. Res. 23:1485–1491.

    Google Scholar 

  46. Reijnierse, G. L. A., Veldstra, H., and Van den Berg, C. J. 1975. Subcellular localization of gamma-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain. Biochem. J. 152:469–475.

    Google Scholar 

  47. Gorini, A., D'Angelo, A., and Villa, R. F. 1998. Action of L-acetylcanitine on different cerebral mitochondrial populations from cerebral cortex. Neurochem. Res. 23:1485–1491.

    Google Scholar 

  48. Gorini, A., Ghigini, B., and Villa, R. F. 1996. Acetylcholinesterase activity of synaptic plasma membranes during ageing: effect of L-acetylcanitine. Dementia 7:147–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorini, A., D'Angelo, A. & Villa, R.F. Energy Metabolism of Synaptosomal Subpopulations from Different Neuronal Systems of Rat Hippocampus: Effect of L-Acetylcarnitine Administration In Vivo. Neurochem Res 24, 617–624 (1999). https://doi.org/10.1023/A:1021008306414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021008306414

Navigation