Skip to main content
Log in

On the Possibility of s+d Wave Superconductivity Within a Two-Band Scenario for High T c Cuprates

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A variety of different experimental results show substantial evidence that the order parameter in high-temperature superconducting copper oxides is not of pure d-wave symmetry, but that an s-wave component exists, which especially shows up in experiments that test the c-axis properties. These findings are modeled theoretically within a two-band model with interband interactions, where the superconducting order parameters in the two bands are allowed to differ in symmetry. It is found that the coupling of order parameters with different symmetries (s+d) leads to substantial enhancements of the superconducting transition temperature T c as compared to order parameters with only s-wave symmetry. An additional enhancement factor of T c is obtained from the coupling of the bands to the lattice where moderate couplings favor superconductivity while too strong couplings lead to electron (hole) localization and consequently suppress superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961(1989).

    Google Scholar 

  2. P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. B 46, 14803(1992).

    Google Scholar 

  3. E. Dagotto, Rev. Mod. Phys. 66, 763(1994).

    Google Scholar 

  4. E. D. Pines, Physica C 235–240, 113(1994).

    Google Scholar 

  5. D. J. Scalapino, Phys. Rep. 250, 329(1995).

    Google Scholar 

  6. J. Haase, J. Supercond: Incorp. Novel Magnetism 13, 723(2000).

    Google Scholar 

  7. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759(1988).

    Google Scholar 

  8. C. C. Tsuei, R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M.-B. Ketchen, Phys. Rev. Lett. 73, 593(1994)

    Google Scholar 

  9. C. C. Tsuei and R. Kirtley, Rev. Mod. Phys. 72, 969(2000).

    Google Scholar 

  10. Q. Li, Y. N. Tsay, M. Duenaga, R. A. Klemm, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 83, 4160(1999).

    Google Scholar 

  11. K. A. Müller, J. Supercond. 13, 863(2000).

    Google Scholar 

  12. K. A. Müller and H. Keller, in High-T c Superconductivity: Ten Years After the Discovery (NATO, 1997). NATO ASI Series E, Vol. 343, p. 7.

  13. K. A. Müller, Phil. Mag. Lett. 82, 279(2002).

    Google Scholar 

  14. A. Lanzara, G. Zhao, N. L. Saini, A. Bianconi, K. Conder, H. Keller, and K. A. Müller, J. Phys.: Condens. Matter 11, L541(1999).

    Google Scholar 

  15. D. Rubio Temprano, J. Mesot, A. Furrer, K. Conder, H. Mutka, and K. A. Müller, Phys. Rev. Lett. 84, 190(2000).

    Google Scholar 

  16. D. Rubio Temprano, J. Mesot, S. Janssen, K. Conder, A. Furrer, A. Sokolov, T. Trounov, S. M. Kazakov, J. Karpinski, and K. A. Müller, Eur. Phys. J. B 19, R5(2001).

    Google Scholar 

  17. A. Nazarenko, A. Moreo, E. Dagotto, and J. Rieira, Phys. Rev. B 54, R768(1996).

    Google Scholar 

  18. A. Bussmann-Holder, A. R. Bishop, H. Büttner, T. Egami, R. Micnas, and K. A. Müller, J. Phys.: Condens. Matter 13, L545(2001)

    Google Scholar 

  19. A Bussmann-Holder, K. A. Müller, R. Micnas, H. Büttner, A. Simon, A. R. Bishop, and T. Egami, J. Phys.: Condens. Matter 13, L169(2001).

    Google Scholar 

  20. R. S. Markiewicz, C. Kusko, and V. Kidambi, Phys. Rev. B 60, 627(1999), and therein

    Google Scholar 

  21. S. C. Zhang, Science 275, 1089(1997).

    Google Scholar 

  22. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552(1959).

    Google Scholar 

  23. V. A. Moskalenko, Fiz. Met. Metalloved. 8, 503(1959).

    Google Scholar 

  24. J. Kondo, Prog. Theor. Phys. 29, 1(1963).

    Google Scholar 

  25. B. T. Geilikman, R. O. Tsaitsev, and V. Z. Kresin, Sov. Phys. Solid State 9, 642(1967).

    Google Scholar 

  26. V. Z. Kresin, J. Low Temp. Phys. 11, 519(1973).

    Google Scholar 

  27. V. Z. Kresin and S. Wolf, Physica C 169, 476(1990).

    Google Scholar 

  28. S. Robaszkiewicz, R. Micnas, and J. Ranninger, Phys. Rev. B 36, 180(1987).

    Google Scholar 

  29. A. Bussmann-Holder and A. R. Bishop, Z. Phys. B 90, 183(1993).

    Google Scholar 

  30. B. K. Chakraverty, Phys. Rev. B 48, 4047(1993).

    Google Scholar 

  31. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005(2001).

    Google Scholar 

  32. H. D. Lang, J.-Y. Lin, H. H. Li, F. H. Hsu, C. J. Liu, S.-C. Li, R. C. Yu, and C.-Q. Jin, Phys. Rev. Lett. 87, 167003(2001).

    Google Scholar 

  33. X.-K. Chen, M. J. Konstantinovic, J. C. Irwin, D. D. Lawrie, and J. P. Franck, Phys. Rev. Lett. 87, 157002(2001).

    Google Scholar 

  34. I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301(1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussmann-Holder, A., Micnas, R. On the Possibility of s+d Wave Superconductivity Within a Two-Band Scenario for High T c Cuprates. Journal of Superconductivity 15, 321–325 (2002). https://doi.org/10.1023/A:1021005826860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021005826860

Navigation