Skip to main content
Log in

Auxiliary Field Functional Integral Representation of the Many-Body Evolution Operator

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Finding an appropriate functional integral representation of the many-body evolution operator is a crucial task for performing efficient calculations of fermionic systems within the auxiliary field approach. In this paper we derive a new field representation of the imaginary-time evolution operator using the method of Gaussian equivalent representation of Efimov and Ganbold (1991, Physica Status Solidi 168, 165). The goal is to obtain a functional integral representation, in which the main divergences caused by the tadpole Feynman diagrams are efficiently eliminated. These diagrams provide the main contributions to the ground state of the system under consideration, and therefore it is important to take them into account adequately, especially at lower temperatures. In addition, we show that the well-known mean field representation of the imaginary-time evolution operator is only the limiting case of the Gaussian equivalent representation in the small time-step regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Attias, H. and Alhassid, Y. (1997). Nuclear Physics A 625, 565.

    Google Scholar 

  • Baer, R. (2000a). Chemical Physics Letters 324, 101.

    Google Scholar 

  • Baer, R. (2000b). Journal of Chemical Physics 113, 473.

    Google Scholar 

  • Baer, R. (2001). Chemical Physics Letters 343, 535.

    Google Scholar 

  • Baer, R., Head-Gordon, M., and Neuhauser, D. (1998). Journal of Chemical Physics 109, 6219.

    Google Scholar 

  • Baer, R. and Neuhauser, D. (2000). Journal of Chemical Physics 112, 1679.

    Google Scholar 

  • Baeurle, S. A. (2000). Classical statistical mechanics with auxiliary fields, PhD Thesis, University of Stuttgart, Stuttgart, Germany.

    Google Scholar 

  • Baeurle, S. A. (2002). Physical Review Letters 89, 080602.

    Google Scholar 

  • Baeurle, S. A., Baer, R., and Yacobi, S. (in preparation).

  • Baeurle, S. A., Martonak, R., and Parrinello, M. (2002). Journal of Chemical Physics 117, 3027.

    Google Scholar 

  • Charutz, D. M. and Neuhauser, D. (1994). Journal of Chemical Physics 102, 4495.

    Google Scholar 

  • Efimov, G. V. and Ganbold, G. (1991). Physica Status Solidi 168, 165.

    Google Scholar 

  • Efimov, G. V. and Ganbold, G. (1995). Physics of Particles and Nuclei 26, 198.

    Google Scholar 

  • Gröbner, W. and Hofreiter, N. (1966). Integraltafel—Zweiter Teil: Bestimmte Integrale, Springer-Verlag, Wien, p. 314.

    Google Scholar 

  • Kerman, A. K. and Levit, S. (1981). Physical Review C: Nuclear Physics 24, 1029.

    Google Scholar 

  • Kerman, A. K., Levit, S., and Troudet, T. (1983). Annals of Physics(New York) 148, 436.

    Google Scholar 

  • Lauritzen, B. and Negele, J. W. (1991). Physical Review C: Nuclear Physics 44, 729.

    Google Scholar 

  • Levit, S. (1980). Physical Review C: Nuclear Physics 21, 1594.

    Google Scholar 

  • Parr, R.G. and Yang, W. (1998). Density–Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, p. 249.

    Google Scholar 

  • Rom, N., Charutz, D. M., and Neuhauser, D. (1997). Chemical Physics Letters 270, 382.

    Google Scholar 

  • Rom, N., Fattal, E., Gupta, A. K., Carter, E. A., and Neuhauser, D. (1998). Journal of Chemical Physics 109, 8241.

    Google Scholar 

  • Silvestrelli, P. L., Baroni, S., and Car, R. (1993). Physical Review Letters 71, 1148.

    Google Scholar 

  • Sugiyama, G. and Koonin, S. E. (1986). Annals Physics 168, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeurle, S.A. Auxiliary Field Functional Integral Representation of the Many-Body Evolution Operator. International Journal of Theoretical Physics 41, 1915–1930 (2002). https://doi.org/10.1023/A:1021004907220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021004907220

Navigation