Skip to main content
Log in

Estimate of the Attenuation of γ Rays by Nanostructural Materials

  • Published:
Atomic Energy Aims and scope

Abstract

Differences in the attenuation of γ rays by nanostructural materials as compared with ordinary materials are examined. The characteristic features of scattering by the structural units of a nanostructural material and the propagation of γ rays are discussed on the basis of a solution of the transfer equation. The contribution of total surface reflection at internal boundaries of such a material to the increase in the absorption of γ rays is estimated. The optimal size of structural units of a nanostructural material for which maximum γ-ray absorption obtains is estimated to be 3.4–4.4 nm. Nanostructural materials provide more protection from γ radiation than do ordinary materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. D. Morokhov, L. I. Trusov, and S. P. Chizhik, Ultradispersed Metallic Media, Atomizdat, Mosocw (1979).

    Google Scholar 

  2. I. D. Morokhov, L. I. Trusov, and V. N. Lapovok, Physical Phenomena in Ultradispersed Media, Énergoatomizdat, Moscow (1984).

    Google Scholar 

  3. R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Obtained by Intense Plastic Deformation, Logos, Mosow (2000).

    Google Scholar 

  4. C. Kittel, Introduction to Solid State Physics [Russian translation], Nauka, Moscow (1978).

    Google Scholar 

  5. O. S. Marenkov and N. I. Komyak, Reference Data on the Photon Interaction Coefficients in x-Ray Radiometric Analysis, Énergoatomizdat, Moscow (1988).

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Nauka, Moscow (1982).

    Google Scholar 

  7. J. Hubbell and I. Overbo, “Relativistic atomic form factors and photon coherent scattering cross sections,” J. Phys. Chem. Ref. Data, 8, No. 1, 69–105 (1979).

    Google Scholar 

  8. L. Kissel, R. Pratt, and S. Roy, “Rayleigh scattering by neutral atoms, 100 eV to 10 MeV,” Phys. Rev. 22A, No. 5, 1970–2004 (1980).

    Google Scholar 

  9. V. A. Arkad'ev, M. A. Kumakhov, and L. I. Ognev, “On total external reflection of γrays from surfaces,” Pis'ma Zh. Tekh. Fiz. 12, No. 21, 1307–1311 (1986).

    Google Scholar 

  10. V. A. Artem'ev and N. I. Sokolovskii, “Estimate of the attenuation of x-rays by ultradispersed media,” At. Énerg., 81, No. 6, 448–455 (1996).

    Google Scholar 

  11. V. A. Artem'ev, “On the attenuation of x-ray radiation by ultradispersed media,” Pis'ma Zh. Tekh. Fiz. 23, No. 6, 5–9 (1997).

    Google Scholar 

  12. N. P. Kalashnikov, V. S. Remizovich, and M. I. Ryazanov, Collisions of Fast Charged Particles in Solids, Atomizdat, Moscow (1980).

    Google Scholar 

  13. V. P. Mashkovich and A. V. Kudryavtseva, Handbook of Protection from Ionizing Radiations, Énergoatomizdat, Moscow (1995).

    Google Scholar 

  14. I. S. Grigor'ev and E. Z. Meilikhov (eds.), Reference Data on Physical Quantities, Énergoatomizdat, Moscow (1991)

    Google Scholar 

  15. Ya. S. Umanskii, B. N. Finkel'shtein, M. E. Blanter, et al., Physical Metallurgy, Metallurgizdat, Moscow (1955).

    Google Scholar 

  16. Single Crystal Fibers and Materials Reinforced with Them [Russian translation], Mir, Moscow (1973).

  17. V. A. Artem'ev, S. V. Chuklyaev, Yu. A. Krikun, et al., “Transmission of x-ray through ultradispersed systems,” At. Énerg., 78, No. 3, 186–191 (1995).

    Google Scholar 

  18. V. A. Vorob'ev, V. E. Golovanov, and S. I. Golovanova, Methods of Radiation Granulometry and Statistical Simulation, Énergoatomizdat, Moscow (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artem'ev, V.A. Estimate of the Attenuation of γ Rays by Nanostructural Materials. Atomic Energy 93, 665–672 (2002). https://doi.org/10.1023/A:1021000916291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021000916291

Keywords

Navigation