Skip to main content
Log in

POR structural domains important for the enzyme activity in R. capsulatus complementation system

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

NADPH:protochlorophyllide oxidoreductase (POR) catalyzes hydrogen transfer from NADPH to protochlorophyllide (PChlide) in the course of chlorophyll biosynthesis in photosynthetic organisms and is involved in the regulation of the development of photosynthetic apparatus in higher plants, algae and cyanobacteria. To approach molecular factors determining the enzyme activity in a living cell, several mutants of POR from pea (Pisum sativum) with site-directed modifications in different parts of the enzyme were generated. The mutant enzymes were expressed in a R. capsulatus mutant deficient in BChl biosynthesis, and their catalytic activity and ability to integrate in bacterial metabolism were analyzed. Our results demonstrate that in heterologous bacterial cell system, higher plant POR is integrated in the porphyrin biosynthesis network and its activity leads to the formation of photosynthetic chlorophyll-proteins (CPs). The study of POR mutants in R. capsulatus reveals several POR domains important for the association of the enzyme with other subcellular components and for its catalytic activity, including identification of putative enzyme reaction center and substrate binding site. The study also demonstrated that an unknown structural factor is important for the formation of the enzyme photoactive complex in etiolated plants. Moreover, our findings suggest that POR might be directly involved in the regulation of the metabolism of other porphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer CE and Bird TH (1996) Regulatory circuits controlling photosynthesis gene expression. Cell 85: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43–73

    Article  CAS  Google Scholar 

  • Boddi B, Ryberg M and Sundqvist C (1992) Identification of 4 universal protochlorophyllide forms in dark-grown leaves by analyses of the 77-k fluorescence emission-spectra. J Photochem Photobiol B 12: 389–401

    Article  CAS  Google Scholar 

  • Boddi B, Ryberg M and Sundqvist C (1993) Analysis of the 77-k fluorescence emission and excitation-spectra of isolated etioplast inner membranes. J Photochem Photobiol B 21: 125–133

    Article  CAS  Google Scholar 

  • Burke DH, Alberti M and Hearst JE (1993) BchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the 3rd subunit of light-independent protochlorophyllide reductase in bacteria and plants. J Bacteriol 175: 2414–2422

    PubMed  CAS  Google Scholar 

  • Carugo O and Argos P (1997) NADP-dependent enzymes.1. Conserved stereochemistry of cofactor binding. Proteins 28: 10–28

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P and Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48: 55–63

    Article  CAS  Google Scholar 

  • Dahlin C, Aronsson H, Wilks HM, Lebedev N, Sundqvist C and Timko MP (1999) The role of protein surface charge in catalytic activity and chloroplast membrane association of the pea NADPH: protochlorophyllide oxidoreductase (POR) as revealed by alanine scanning mutagenesis. Plant Mol Biol 39: 309–323

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J and Michel H (1991) Structures of bacterial photosynthetic reaction centers. Annu Rev Cell Biol 7: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Esen A (1978) Simple method for quantitative, semi-quantitative, and qualitative assay of protein. Anal Biochem 89:264–273

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Martin GEM, Reid RJ, Hunter CN, and Wilks HM (2000) NADPH: protochlorophyllide oxidoreductase from Synechocystis: overexpression, purification and preliminary characterization FEBS Lett 483: 47–51

    Article  PubMed  CAS  Google Scholar 

  • Hughes JM, Hutter MC, Reimers JR and Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123: 8550–8563

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalezduarte R, Jeffery J and Ghosh D (1995) Short-chain dehydrogenases reductases (SDR). Biochemistry 34: 6003–6013

    Article  PubMed  CAS  Google Scholar 

  • Kasturi S, Kihara A, Fitzgerald D and Pastan I (1992) Alanine scanning mutagenesis identifies surface amino acids on domain II of Pseudomonas exotoxin required for cytotoxicity, proper folding, and secretion into periplasm. J Biol Chem 267: 23427–23433

    PubMed  CAS  Google Scholar 

  • Kirmaier C, He CY and Holten D (2001) Manipulating the direction of electron transfer in the bacterial reaction center by swapping Phe for Tyr near BChl(M) (L181) and Tyr for Phe near BChl(L) (M208). Biochemistry 40: 12132–12139

    Article  PubMed  CAS  Google Scholar 

  • Klement H, Helfrich M, Oster U, Schoch S and Rudiger W (1999) Pigment-free NADPH: protochlorophyllide oxidoreductase from Avena sativa L-purification and substrate specificity. Eur J Biochem 265: 862–874

    Article  PubMed  CAS  Google Scholar 

  • Klement H, Oster U and Rudiger W (2000) The influence of glycerol and chloroplast lipids on the spectral shifts of pigments associated with NADPH: protochlorophyllide oxidoreductase from Avena sativa L. FEBS Lett 480: 306–310

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rudiger W and Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24: 523–531

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD The evolution of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 367-383. CRC Press, Boca Raton, Florida

  • Lebedev N (1996) Fluorescence analysis of protochlorophyll(ide) to chlorophyll(ide) conversion in the green alga Chlamydomonas reinhardtii mutants. Photosynthetica 32: 569–585

    CAS  Google Scholar 

  • Lebedev N and Timko MP (1998) Protochlorophyllide photoreduction. Photosynth Res 58: 5–23

    Article  CAS  Google Scholar 

  • Lebedev N and Timko MP (1999) Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: Insight into the mechanism of chlorophyll formation in lightadapted plants. Proc Natl Acad Sci USA 96: 9954–9959

    Article  PubMed  CAS  Google Scholar 

  • Lebedev NN, Siffel P and Krasnovskii AA (1985) Detection of protochlorophyllide forms in irradiated green leaves and chloroplasts by difference fluorescence spectroscopy at 77 K. Photosynthetica 19: 183–187

    CAS  Google Scholar 

  • Lebedev N, vanCleve B, Armstrong G and Apel K (1995) Chlorophyll synthesis in a deetiolated-(det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive PChlide-F655. Plant Cell 7: 2081–2090

    Article  PubMed  CAS  Google Scholar 

  • Lebedev N, Karginova O, McIvor W and Timko MP (2001) Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH: protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry 40: 12562–12574

    Article  PubMed  CAS  Google Scholar 

  • Martin GEM, Timko MP and Wilks HM (1997) Purification and kinetic analysis of pea (Pisum sativum L.) NADPH:Protochlorophyllide oxidoreductase expressed as a fusion with maltose-binding protein in Escherichia coli. Biochem J 325: 139–145

    PubMed  CAS  Google Scholar 

  • Nagashima M, Lundh E, Leonard JC, Morser J and Parkinson JF (1993) Alanine-scanning mutagenesis of the epidermal growth factor-like domains of human thrombomodulin identifies critical residues for its cofactor activity. J Biol Chem 268: 2888–2892

    PubMed  CAS  Google Scholar 

  • Oliver RP and Griffiths WT (1980) Identification of the polypeptides of NADPH-protochlorophyllide oxidoreductase. Biochem J 191: 277–280

    PubMed  CAS  Google Scholar 

  • Oster U, Brunner H and Rudiger W (1996) The greening process in cress seedlings. 5. Possible interference of chlorophyll precursors, accumulated after thujaplicin treatment, with light-regulated expression of Lhc genes. J Photochem Photobiol B 36: 255–261

    Article  CAS  Google Scholar 

  • Papenbrock J and Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis-studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213: 667–681

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic, and marine organisms, including recalcitrant alga. In: Scheer H (ed) Chlorophylls, pp 31–57. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206–6212

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Lebedev N and Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80–84

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel K and Lebedev N (1996) Evolution of chlorophyll biosynthesis-the challenge to survive photooxidation. Cell 86: 703–705

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, He ZH, Michel H, Hunt DF and Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH-protochlorophyllide oxidoreductase in pea (Pisum sativum L). Plant Mol Biol 18: 967–972

    Article  PubMed  CAS  Google Scholar 

  • Townley HE, Griffiths WT and Nugent JP (1998) A reappraisal of the mechanism of the photoenzyme protochlorophyllide reductase based on studies with the heterologously expressed protein. FEBS Lett 422: 19–22

    Article  PubMed  CAS  Google Scholar 

  • Townley HE, Sessions RB, Clarke AR, Dafforn TR and Griffiths WT (2001) Protochlorophyllide oxidoreductase: a homology model examined by site-directed mutagenesis. Proteins 44: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Wiktorsson B, Ryberg M and Sundqvist C (1996) Aggregation of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34: 23–34

    CAS  Google Scholar 

  • Wilks HM and Timko MP (1995) A light-dependent complementation system for analysis of nadph-protochlorophyllide oxidoreductase-identification and mutagenesis of 2 conserved residues that are essential for enzyme-activity. Proc Natl Acad Sci USA 92: 724–728

    Article  PubMed  CAS  Google Scholar 

  • Yang ZM and Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosyntheticpathway. J Bacteriol 172: 5001–5010

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Lebedev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, N., Timko, M.P. POR structural domains important for the enzyme activity in R. capsulatus complementation system. Photosynthesis Research 74, 153–163 (2002). https://doi.org/10.1023/A:1020999325065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020999325065

Navigation