Skip to main content
Log in

Occam’s Razor as a Formal Basis for a Physical Theory

  • Published:
Foundations of Physics Letters

Abstract

We introduce the principle of Occam’s Razor in a form that can be used as a basis for economical formulations of physics. This allows us to explain the general structure of the Lagrangian for a composite physical system, as well as some other artificial postulates behind the variational formulations of physical laws. As an example, we derive Hamilton’s principle of stationary action together with the Lagrangians for the cases of Newtonian mechanics, relativistic mechanics and a relativistic particle in an external gravitational field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. (Springer, New York, 1997).

    Book  MATH  Google Scholar 

  2. R. Solomonoff, “A formal theory of inductive inference,” Part 1 and Part 2, Inform. Contr. 71 and 224 (1964).

  3. P. Vitányi and M. Li, IEEE Transactions on Information Theory 46 (2000) 446, and references therein; also available as LANL e-print cs.LG/9901014 (1999).

    Article  Google Scholar 

  4. A. N. Kolmogorov, “Three approaches to the quantitative definition of information,” Problems Inform. Transmission 1, 1 (1965).

    MATH  Google Scholar 

  5. R. Solomonoff, “A preliminary report on a general theory of inductive inference,” Tech. Rep. No. ZTB-138 (Zator Company, Cambridge, MA, 1960).

    Google Scholar 

  6. G. J. Chaitin, “On the lengths of programs for computing finite binary sequences: statistical considerations,” J. ACM 16, 145 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. A. Levin, “Laws of information conservation (non-growth) and aspects of the foundation of probability theory,” Problems Inform. Transmission 10, 206 (1974); “Various measures of complexity for finite objects (axiomatic description),” Soviet Math. Dokl. 17, 522 (1976).

    ADS  Google Scholar 

  8. P. Gács, “On the symmetry of algorithmic information,” Soviet Math. Dokl. 15, 1477 (1974); correction ibid 15 1480 (1974).

    MATH  Google Scholar 

  9. G. J. Chaitin, “A theory of program size formally identical to information theory,” J. ACM 22, 329 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. N. Soklakov, “Complexity analysis for algorithmically simple strings,” LANL e-print cs. LG/0009001 (2000).

  11. L. D. Landau and E. M. Lifshitz, 3rd edn., Mechanics, Course of Theoretical Physics, Vol.1 (Butterworth-Heinemann, Oxford, 1998).

    Google Scholar 

  12. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, London, 1980).

    MATH  Google Scholar 

  13. L. H. Ryder, Quantum Field Theory, 2nd edn. (Cambridge University Press, Cambridge, 1996), p. 85.

    Book  MATH  Google Scholar 

  14. R. P. Feynman, Theory of Fundamental Processes (Benjamin, New York, 1962), p. 87.

    Google Scholar 

  15. C. Lanczos, The Variational Principles of Mechanics, 4th edn. (Dover, New York, 1970), p. 14.

    MATH  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics, Vol.2, 4th edn. (Pergamon, Oxford, 1989), Chap. 10, §87.

    Google Scholar 

  17. P. Ramond, Field Theory: A Modern Primer (Benjamin/Cummings, London, 1981).

    MATH  Google Scholar 

  18. C. H. Woo, “Quantum field theory and algorithmic complexity,” Phys. Lett. 168B, 376 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. D. Dzhunushaliev, “Kolmogorov’s algorithmic complexity and its probability interpretation in quantum gravity,” Class. Quant. Grav. 15, 603 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. G. W. Gibbons, S. W. Hawking, and M. J. Perry, “Path integrals and the indefiniteness of the gravitational action,” Nucl. Phys B 138, 141 (1978).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei N. Soklakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soklakov, A.N. Occam’s Razor as a Formal Basis for a Physical Theory. Found Phys Lett 15, 107–135 (2002). https://doi.org/10.1023/A:1020994407185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020994407185

Navigation