Skip to main content
Log in

Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites*

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In extracts of senescent leaves of spinach (Spinacia oleracea), five colourless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named So-NCCs. The most abundant polar NCC in the leaves of this vegetable, So-NCC-2, had been isolated earlier and its constitution was determined by spectroscopic means. The catabolite So-NCC-2 was found to be an epimer of a polar NCC from barley (Hordeum vulgare), the first non-green chlorophyll catabolite from a higher plant to be structurally analyzed. Here, we report on the isolation of four additional So-NCCs from the extracts of senescent leaves of Sp. oleracea by two- (or multi-)stage chromatographic purification and on their structural characterization. The constitution of So-NCC-3 could be determined by spectroscopic analysis in combination with chemical correlation with a known NCC from Cercidiphyllum japonicum (Cj-NCC): So-NCC-3 was identified as the hydrolysis product of the methyl ester function of Cj-NCC. The less polar catabolite So-NCC-4 could be directly identified with Cj-NCC. Two further So-NCCs, So-NCC-1 and So-NCC-5, were detected only in trace amounts. Five structurally related nonfluorescent chlorophyll catabolites (So-NCCs) are thus present in senescent leaves of spinach. The structures of this set of So-NCCs indicate several peripheral refunctionalization reactions and inform on the late catabolic transformations during leaf senescence. The transformation of the tetrapyrrolic skeleton in chlorophyll catabolism in spinach and in C. japonicum is revealed to exhibit a common stereochemical pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bortlik K-H, Peisker C and Matile P (1990) A novel type of chlorophyll catabolite in senescent barley leaves. J Plant Physiol 136: 161–165

    CAS  Google Scholar 

  • Brown SB, Houghton JD and Hendry GAF (1991) Chlorophyll breakdown. In:Scheer H (ed) Chlorophylls, pp 465–489. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Curty C and Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42: 1531–1536

    Article  CAS  Google Scholar 

  • Doi M, Inage T and Shioi Y (2001) Chlorophyll degradation in a Chlamydomonas reinhardtii mutant: an accumulation of pyropheophorbide a by anaerobiosis. Plant Cell Physiol 42: 469–474

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg S and Matile P (1993) Identification of catabolites of chlorophyll porphyrin in senescent rape cotyledons. Plant Physiol 102: 521–527

    PubMed  CAS  Google Scholar 

  • Hendry GAF, Houghton JD and Brown SB (1987) The degradation of chlorophyll-a biological enigma. New Phytol 107: 255–302

    Article  CAS  Google Scholar 

  • Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P and Hörtensteiner S (1996) How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 271: 27233–27236

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (1998a) NCC malonyltransferase catalyses the fi-nal step of chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49: 953–956

    Article  PubMed  Google Scholar 

  • Hörtensteiner S and Kräutler B (2000) Chlorophyll breakdown in oilseed rape. Photosynth Res 64: 137–146

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Vicentini F and Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129: 237–246

    Article  Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P, Ongania K-H and Kräutler B (1998b) The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273: 15335–15339

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Rodoni S, Schellenberg M, Vicentini F, Nandi OI, Qiu Y-L and Matile P (2000) Evolution of chlorophyll degradation: the significance of RCC reductase. Plant Biol 2: 63–67

    Article  Google Scholar 

  • Ito H, Tanaka Y, Tsuji H and Tanaka A (1993) Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Arch Biochem Biophys 306: 148–151

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Ohysuka T and Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271: 1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Iturraspe J, Moyano N and Frydman B (1995) A new 5-formylbilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 60: 6664–6665

    Article  CAS  Google Scholar 

  • Kessler H, Gehrke M and Griesinger C (1988) Zweidimensionale NMR-Spektroskopie, Grundlagen und Ñbersicht über die Experimente. Angew Chem 100: 507–544; Angew Chem Int Ed Engl 27: 490-537

    CAS  Google Scholar 

  • Kräutler B and Matile P (1999) Solving the riddle of chlorophyll breakdown. Acc Chem Res 32: 35–43

    Article  Google Scholar 

  • Kräutler B, Jaun B, Bortlik K-H, Schellenberg M and Matile P (1991) On the enigma of chlorophyll degradation: the constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 30: 1315–1318

    Article  Google Scholar 

  • Kräutler B, Jaun B, Amrein W, Bortlik K, Schellenberg M and Matile P (1992) Breakdown of chlorophyll: constitution of a secoporphinoid chlorophyll catabolite isolated from senescent barley leaves. Plant Physiol Biochem 30: 333–346

    Google Scholar 

  • Losey FG and Engel N (2001) Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare. J Biol Chem 276: 8643–8647

    Article  PubMed  CAS  Google Scholar 

  • Lu Y-P, Li Z-S, Drozdowicz Y-M, Hörtensteiner S, Martinoia E and Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10: 267–282

    Article  PubMed  CAS  Google Scholar 

  • Matile P (1987) Seneszenz bei Pflanzen und ihre Bedeutung für den Stickstoffhaushalt. Chimia 41: 376–381

    CAS  Google Scholar 

  • Matile P and Kräutler B (1995) Wie und warum bauen Pflanzen das Chlorophyll ab. Chem unserer Zeit 29: 298–306

    Article  CAS  Google Scholar 

  • Matile P, Ginsburg S, Schellenberg M and Thomas H (1988) Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells. Proc Natl Acad Sci USA 85: 9529–9532

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H and Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112: 1403–1409

    PubMed  CAS  Google Scholar 

  • Mendel G (1865) Versuche über Pflanzenhybriden. Verhandlungen des Naturwissenschaftlichen Vereins, Brünn 4: 3–47

    Google Scholar 

  • Mühlecker W and Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34: 61–75

    Google Scholar 

  • Mühlecker W, Kräutler B, Ginsburg S and Matile P (1993) Breakdown of chlorophyll: the constitution of a secoporphinoid chlorophyll catabolite from senescent rape leaves. Helv Chim Acta 76: 2976–2980

    Article  Google Scholar 

  • Mühlecker W, Ongania K-H, Kräutler B, Matile P and Hörtensteiner S (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a fluorescent chlorophyll catabolite. Angew Chem Int Ed Engl 36: 401–404

    Article  Google Scholar 

  • Mühlecker W, Kräutler B, Moser D, Matile P and Hörtensteiner S (2000) Breakdown of chlorophyll: a fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 83: 278–286

    Article  Google Scholar 

  • Oberhuber M, Berghold J, Mühlecker W, Hörtensteiner S and Kräutler B (2001) Chlorophyll breakdown-on a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84: 2615–2627

    Article  CAS  Google Scholar 

  • Pretsch E, Bühlmann P and Affolter C (2000) Structure Determination of Organic Compounds, pp 158–160. Springer-Verlag, Berlin

    Google Scholar 

  • Rodoni S, Vicentini F, Schellenberg M, Matile P and Hörtensteiner S (1997) Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol 115: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Sanders JKM and Hunter BK (1987) Modern NMR-spectroscopy. Oxford University Press, Oxford Scheer H (ed) (1991) Chlorophylls. CRC-Press, Boca Raton, Florida

    Google Scholar 

  • Scheumann V, Ito H, Tanaka A, Schoch S and Rüdiger W (1996) Substrate specificity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare). Eur J Biochem 242: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Scheumann V, Schoch S and Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Shioi Y, Watanabe K and Takamiya K (1996) Enzymatic conversion of pheophorbide a to a precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 37: 1143–1149

    CAS  Google Scholar 

  • Smith RD, Light-Wahl KJ, Winger BE and Goodlett DR (1995) Electrospray Ionization. In: Matsuo T, Caprioli RM, Gross ML and Seyama Y (eds) Biological Mass Spectrometry: Present and Future, pp 41–74. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M, Hörtensteiner S, Matile P, Amrhein N and Martinoia E (1998) An ABC transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13: 773–780

    Article  PubMed  CAS  Google Scholar 

  • Watson TR (1995) Fast atom bombardment. In: Matsuo T, Caprioli RM, Gross ML and Seyama Y (eds) Biological Mass Spectrometry: Present and Future, pp 24–40. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Wüthrich KL, Bovet L, Hunziker PE, Donnison IS and Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21: 189–198

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kräutler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berghold, J., Breuker, K., Oberhuber, M. et al. Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites* . Photosynthesis Research 74, 109–119 (2002). https://doi.org/10.1023/A:1020991023248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020991023248

Navigation