Skip to main content
Log in

Evidence of Regional Differences in the Lectin Histochemistry Along the Ductus Epididymis of the Lizard, Podarcis Sicula Raf.

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

The regional difference in the carbohydrate components of the ductus epididymis epithelium of a lizard was delineated by means of 13 lectins. Basal cells expressed only N-acetylglucosamine (GlcNAc). Throughout the ductus, the secretory cells showed oligosaccharides with terminal N-acetylneuraminic acid (Neu5Ac)α(2,6)galactose (Gal)/N-acetylgalactosamine (GalNAc) and internal mannose (Man) and/or glucose (Glc) in the whole cytoplasm, oligosaccharides terminating in Neu5Acα(2,6)Galβ(1,3)GalNAc, Neu5Acα(2,6)Galβ (1,4)GlcNAc, GalNAc, GlcNAc, and fucose (Fuc) in the supra-nuclear zone, and also glycans terminating in Neu5Acα(2,3)Galβ (1,4)GlcNAc, Neu5Acα(2,6)Galβ(1,3)GalNAc, Galβ (1,4)GlcNAc on the luminal surface. In the caput and corpus regions, the supra-nuclear cytoplasm was characterized by terminal Galβ(1,4)GlcNAc and αGalNAc, the luminal surface by αGalNAc and Gal. The Golgi zone, showing oligosaccharides with terminal Neu5Acα(2,3)Galβ (1,4)GlcNAc, Neu5Acα(2,6)Galβ (1,3)GalNAc, Neu5Acα(2,6)Galβ (1,4)GlcNAc, and internal GlcNAc, expressed terminal Galβ (1,4)GlcNAc and αGalNAc in the caput, and terminal β GalNAc in the corpus. The granules showed all the investigated carbohydrates in their peripheral zone except terminal βGalNAc and Fuc, whereas internal Man/Glc and terminal Gal were expressed in the central core, and Fuc throughout the ductus, terminal GlcNAc in the caput and corpus, and terminal αGalNAc only in the corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acott TS, Hoskins DD (1981) Bovine sperm forward motility protein: Binding to epididymal spermatozoa. Biol Reprod 24: 234–240.

    Article  CAS  PubMed  Google Scholar 

  • Arenas MI, Madrid JF, Bethencourt FR, Fraile B, Paniagua R (1998) Identification of N-and O-linked oligosaccharides in the human epididymis. J Histochem Cytochem 46: 1185–1188.

    CAS  PubMed  Google Scholar 

  • Arya M, Vanha-Perttula T (1984) Distribution of lectin binding in rat testis and epididymis. Andrologia 16: 495–508.

    Article  CAS  PubMed  Google Scholar 

  • Arya M, Vanha-Perttula T (1985) Lectin-binding pattern of bull testis and epididymis. J Androl 6: 230–242.

    CAS  PubMed  Google Scholar 

  • Arya M, Vanha-Perttula T (1986) Comparison of lectin-staining pattern in testis and epididymis of gerbil, guinea pig, mouse, and nutria. Am J Anat 175: 449–469.

    Article  CAS  PubMed  Google Scholar 

  • Averal HI, Manimekalai M, Akbarsha MA (1992) Differentiation along the ductus epididymis of the Indian gerden lizard Calotes versicolor (Daudin). Biol Struct Morphogenesis 4: 53–57.

    Google Scholar 

  • Baenziger JV, Fiete D (1979) Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem 254: 9795–9799.

    CAS  PubMed  Google Scholar 

  • Brooks DE (1983) Epididymal functions and their hormonal regulation. Aust J Biol Sci 36: 205–221.

    CAS  PubMed  Google Scholar 

  • Burkett BB, Schulte BA, Spicer SS (1987a) Histochemical evaluation of glycoconjugates in the male reproductive tract with lectin–horseradish peroxidase conjugates: I. Staining of principal cells and spermatozoa in the mouse. Am J Anat 178: 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Burkett BB, Schulte BA, Spicer SS (1987b) Histochemical evaluation of glycoconjugates in the male reproductive tract with lectin–horseradish peroxidase conjugates: II. Staining of ciliated cells, basal cells, flask cells, and clear cells in the mouse. Am J Anat 178: 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Cavazos LF, Feargans WM (1960) Histochemistry and composition of the male reproductive tract of the horned lizard as affected by seasonal variation. Anat Rec 137: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Dacheux JL, Paquignon M(1980) Relations between the fertilizing ability, motility and metabolism of epididymal spermatozoa. Reprod Nutr Develop 20: 1085–1099.

    Article  CAS  Google Scholar 

  • Danguy A, Afik F, Paja B, Gabius HJ (1994) Contribution of carbohydrate histochemistry to glycobiology. Histol Histopathol 9: 155–171.

    CAS  PubMed  Google Scholar 

  • Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117: 41–55.

    Article  CAS  PubMed  Google Scholar 

  • Depeiges A, Dacheux JL (1985) Acquisition of sperm motility and its maintenance during storage in the lizard, Lacerta vivipara. J Reprod Fertil 74: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Depeiges A, Dufaure JP (1981) Major proteins secreted by the epididymis of Lacerta vivipara. Isolation and characterization by electrophoresis of the central core. Biochem Bioph Acta 628: 109–115.

    Google Scholar 

  • Depeiges A, Betail G, Coulet M, Dufaure JP (1985) Histochemical study of epididymal secretions in the lizard, Lacerta vivipara. Cell Tissue Res 239: 463–466.

    Article  CAS  PubMed  Google Scholar 

  • Depeiges A, Force A, Dufaure JP (1987) Production and glycosylation of sperm constitutive proteins in the lizard, Lacerta vivipara: Evolution during the reproductive period. Comp Biochem Physiol 86B: 233–240.

    CAS  Google Scholar 

  • Dufaure JP, Courty Y, Depeiges A, Mesure M, Chevalier M (1986) Evolution and testosterone content of the epididymis during the annual cycle of the lizard Lacerta vivipara. Biol Reprod 35: 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Esponda P (1991) Spermatozoa maturation in vertebrates with internal fertilization. Microsc Electron Biol Cellular 15: 1–24.

    CAS  Google Scholar 

  • Goldstein IJ, Hayes CE (1978) The lectins: Carbohydrate-binding proteins of plants and animals. Adv Carb Chem Biochem 35: 128–340.

    Google Scholar 

  • Haider S (1985) The effects of castration and testosterone replacement on the histology and histochemistry of the epididymis in the Indian wall lizard Hemidactylus flaviviridis. Monit Zool Ital 19: 189–196.

    Google Scholar 

  • Haider S, Rai U (1987) Epididymis of the Indian wall lizard (Hemidactylus flaviviridis) during the sexual cycle and in response to mammalian pituitary gonadotropins and testosterone. J Morphol 191: 151–160.

    Article  CAS  Google Scholar 

  • Hammarström S, Murphy LA, Goldstein IJ, Etzler ME (1977) Carbohydrate binding specificity of four N-acetyl-D-galactosamine 'specific’ lectins: Helix pomatia hemagglutinin, soy bean agglutinin, lima bean lectin and Dolichos biflorus (castor bean lectin). Biochemistry 16: 2750–2755.

    Article  PubMed  Google Scholar 

  • Hayes CE, Goldstein IJ (1974) α-d-galactosyl-binding lectin from Bandeiraea simplicifolia seeds. J Biol Chem 249: 1904–1914.

    CAS  PubMed  Google Scholar 

  • Ihida K, Tsuyama S, Kashio N, Murata F (1991) Subcompartment sugar residues of gastric surface mucous cells studied with labelled lectins. Histochemistry 95: 329–335.

    Article  CAS  PubMed  Google Scholar 

  • Labate M, Desantis S, Corriero A (1997) Glycoconjugates during the annual sexual cycle in lizard epididymal ductuli efferentes: A histochemical study. Eur J Histochem 41: 47–56.

    CAS  PubMed  Google Scholar 

  • Lea OA, Petrusz P, French FS (1978) Purification and localization of acidic epididymal glycoprotein (AEG): A sperm coating protein secreted by rat epididymis. Int J Androl (Suppl.) 2: 592–607.

    Article  CAS  Google Scholar 

  • Lee MC, Damjanov I (1984) Anatomic distribution of lectin-binding sites in mouse testis and epididymis. Differentiation 27: 74–81.

    Article  CAS  PubMed  Google Scholar 

  • Lotan R, Skutelsky E, Danon D, Sharon N (1975) The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250: 8518–8523.

    CAS  PubMed  Google Scholar 

  • Manimekalai M, Akbarsha MA (1992) Secretion of glycoprotein granules in the epididymis of the agamid lizard Calotes versicolor (Daudin) is region-specific. Biol Struct Morphogenesis 4: 96–101.

    Google Scholar 

  • Mesure M, Chevalier M, Depeiges A, Faure J, Dufaure JP (1991) Structure and ultrastructure of the epididymis of the viviparous lizard during the annual hormonal cycle: Changes of the epithelium related to secretory activity. J Morphol 210: 133–146.

    Article  Google Scholar 

  • Orgebin-Crist MC, Fournier-Delpech S (1982) Sperm–egg interaction: Evidence for maturational changes during epididymal transit. J Androl 3: 429–433.

    Google Scholar 

  • Pereira MEA, Kabat EA (1974) Blood group specificity of the lectin Lotus tetragonolobus. Ann NY Acad Sci 234: 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Reid PF, Culing CF, Dunn WL (1978) A histochemical method for the identification of 9-O-acyl sialic acids. An investigation of bovine submaximal gland and intestinal mucins. J Histochem Cytochem 26: 187–192.

    CAS  PubMed  Google Scholar 

  • Robaire B, Hermo L (1988) Efferent ductus, epididymis, and vas deferens: Structure, functions, and their regulation. In: Knobil E, Neill JD, eds. The Physiology of Reproduction, Vol. 1. New York: Raven Press, pp. 999–1080.

    Google Scholar 

  • Roth J (1984) Cytochemical localization of terminal N-acetyl-Dgalactosamine residues in cellular compartments of intestinal goblet cells: Implications for the topology of O-glycosylation. J Cell Biol 98: 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Sata T, Zuber C, Roth J (1990). Lectin digoxigenin conjugates: A new hapten system for glycoconjugate cytochemistry. Histochemistry 94: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Pecters B, Peumans WJ (1987) The elderberry (Sambucus nigra L) bark lectin recognizes the Neu5Ac(α2,6)Gal/GalNAc sequence. J Biol Chem 255: 9719–9723.

    Google Scholar 

  • Shanker Iyer PN, Wilderson KD, Goldstein IJ (1976) An N-acetyl-D-glucosamine binding lectin from Bandeiraea simplicifolia seeds. Biochem Biophys 177: 330–333.

    Article  Google Scholar 

  • Sinowatz F, Friess AE (1983) Localization of lectin receptors on bovine epididymal spermatozoa using a colloidal gold technique. Histochemistry 79: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: A perspective. J Histochem Cytochem 40: 1–38.

    CAS  PubMed  Google Scholar 

  • Sugii S, Kabat EA (1982) Further immunochemical studies on the combining sites of Lotus tetragonolobus and Ulex europaeus I and II lectins. Carbohydr Res 99: 99–101.

    Article  CAS  Google Scholar 

  • Ueda T, Fujimori O, Tsukise A,Yamada K(1998) Histochemical analysis of sialic acids in the rat. Histochem Cell Biol 109: 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Voglmayr JK, Fairbanks G, Lewis RG (1983) Surface glycoprotein changes in ram spermatozoa during epididymal maturation. Biol Reprod 29: 767–775.

    Article  CAS  PubMed  Google Scholar 

  • Wong PYD, Tsang AYF (1982) Studies on the binding of a 32K rat epididymal protein to rat epididymal spermatozoa. Biol Reprod 27: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desantis, S., Labate, M., Maria Labate, G. et al. Evidence of Regional Differences in the Lectin Histochemistry Along the Ductus Epididymis of the Lizard, Podarcis Sicula Raf.. Histochem J 34, 123–130 (2002). https://doi.org/10.1023/A:1020986313281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020986313281

Keywords

Navigation