Skip to main content
Log in

Effect of Allopurinol on Hypoxia-Induced Modification of the NMDA Receptor in Newborn Piglets

  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The present study tests the hypothesis that pretreatment with allopurinol, a xanthine oxidase inhibitor, will prevent modification of the NMDA receptor during cerebral hypoxia in newborn piglets. Eighteen newborn piglets were studied. Six normoxic control animals were compared to six untreated hypoxic and six allopurinol (20 mg/kg i.v.) pretreated hypoxic piglets. Cerebral hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 hour and tissue hypoxia was confirmed biochemically by the measurement of ATP and phosphocreatine. Brain cell membrane Na+,K+-ATPase activity was determined to assess membrane function. Na+,K+-ATPase activity was decreased from control in both the untreated and treated hypoxic animals (46.0 ± 1.0 vs 37.9 ± 2.5 and 37.3 ± 1.4 μmol Pi/mg protein/hr, respectively, p < 0.05). [3H]MK-801 binding was determined as an index of NMDA receptor modification. The receptor density (Bmax) in the untreated hypoxic group was decreased compared to normoxic control (1.09 ± 0.17 vs 0.68 ± 0.22 pmol/mg protein, p < 0.01). The dissociation constant (Kd) was also decreased in the untreated group (10.0 ± 2.0 vs 4.9 ± 1.4 nM, p < 0.01), indicating an increase in receptor affinity. However, in the allopurinol treated hypoxic group, the Bmax (1.27 ± 0.09 pmol/mg protein) was similar to normoxic control and the Kd (8.1 ± 1.2 nM, p < 0.05) was significantly higher than in the untreated hypoxic group. The data show that the administration of allopurinol prior to hypoxia prevents hypoxia-induced modification of the NMDA receptor-ion channel binding characteristics, despite neuronal membrane dysfunction. By preventing NMDA receptor-ion channel modification, allopurinol may produce a neuromodulatory effect during hypoxia and attenuate NMDA receptor mediated excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Johnston, M., McDonald, M., Chen, C., and Trescher, W. 1990. Role of excitatory amino acid receptors in perinatal hypoxicischemic brain injury. Pages 711–716; in Meldrum, B. S., Moroni, F., Simon, R. P. and Woods, J. H. (Eds.) Excitatory Amino Acids, FIDIA Research Foundation Symposium Series, Raven, New York.

  2. Murphy, T. H., Schnaar, R. L., and Coyle. 1996. Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cysteine uptake. FASEB, 4:1624–1633.

    Google Scholar 

  3. Pellegrini-Giampietro, D. E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F. 1990. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J. Neurosci., 10:1035–1041.

    Google Scholar 

  4. Mishra, O. P., and Delivoria-Papadopoulos, M. 1992. NMDA receptor modification of the fetal guinea pig brain during hypoxia. Neurochem. Res., 17:1211–1216.

    Google Scholar 

  5. Goel, R., Mishra, O. P., Razdan, B., and Delivoria-Papdopoulos, M. 1993. Modification of NMDA receptor by in vitro lipid peroxidation in fetal guinea pig brain. Neurosci. Lett., 151:219–223.

    Google Scholar 

  6. Goel, R., Mishra, O. P., and Delivoria-Papdopoulos, M. 1994. Effect od dithiothreitol on lipid peroxidation induced modification of NMDA receptor in fetal guinea pig brain. Neurosci. Lett., 169:109–113.

    Google Scholar 

  7. Aizenman, E., Hartnett, K. A., and Reynolds, I. J. 1990. Oxygen free radicals regulate NMDA receptor function via redox modulatory site. Neuron, 5:841–846.

    Google Scholar 

  8. Mishra, O. P., and Delivoria-Papadopoulos, M. 1989. Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Developmental Brain Research, 45:129–135.

    Google Scholar 

  9. Mishra O. P., and Delivoria-Papadopoulos, M. 1988. Antioxidant enzymes in fetal guinea pig brain during development and the effect of maternal hypoxia. Brain Res., 470(2):173–179.

    Google Scholar 

  10. DiGiacomo, J. E., Pane, C. R., Gwiazdowski, S., Mishra, O. P., and Delivoria-Papadopoulos, M. 1992. Effect of graded hypoxia on brain cell membrane injury in newborn piglets. Biol. Neonate, 61:25–32.

    Google Scholar 

  11. Marro, P. J., McGowan, J., Razdan, B., Mishra, O. P., and Delivoria-Papadopoulos, M. 1994. Effect of allopurinol on uric acid levels and brain cell membrane Na+,K+-ATPase activity during hypoxia in newborn piglets. Brain Res., 650:9–15.

    Google Scholar 

  12. Hoffman, D. J., McGowan, J., Marro, P. J., Mishra, O. P. and Delivoria-Papadopoulos, M. 1994. Hypoxia-induced modification of the N-methyl-D-aspartate receptor in the brain of the newborn piglet. Neurosci. Lett., 167:156–160.

    Google Scholar 

  13. Lamprecht, W., Stein, P., Heinz, F., and Weisser, H. 1974. Creatine phosphate. In: Methods of Enzymatic Analysis (Bergmeyer, HU, ed.), Academic Press, NY, 4:1777–1781.

    Google Scholar 

  14. Harik, S. I., Doul, G. H., and Dick, A. P. K. 1986. Specific ouabain binding to brain microvessels and choroid plexus. J. Cereb. Blood Flow Metab., 5:156–160.

    Google Scholar 

  15. Mishra, O. P., and Delivoria-Papadopoulos, M. 1988. Na+,K+-ATPase in developing fetal guinea pig brain and the effect of maternal hypoxia. Neurochem. Res., 13:765–770.

    Google Scholar 

  16. Lowry, O., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193:265–275.

    Google Scholar 

  17. Williams, K., Romano, C., and Molinoff, P. 1989. Effects of polyamines on the binding of 3H-MK-801 to the N-methyl-D-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol. Pharmacol., 36:575–581.

    Google Scholar 

  18. Reynolds, I. 1990. Modulation of NMDA receptor responsiveness by neurotransmitters, drugs and chemical modification. Life Sciences, 47:1785–1792.

    Google Scholar 

  19. Choi, D. W. 1987. Ionic dependence of glutamate neurotoxicity. J. Neurosci., 7:369–379.

    Google Scholar 

  20. Choi, D. W. 1988a. Glutamate neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci., 11:465–469.

    Google Scholar 

  21. McGeer, P., and McGeer, E. 1989. Amino acid neurotransmitters. in Siegel G, (ed.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 4th edition Raven Press.

  22. Vannucci, R. 1990. Experimental biology of cerebral hypoxiaischemia: relation to perinatal brain damage. Pediatr. Res., 27:317–326.

    Google Scholar 

  23. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L. 1986. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature, 321:519–522.

    Google Scholar 

  24. Villalba, M., Martinez-Serrano, A., Borner, C., Blanco, P., and Satrustegui, J. 1992. NMDA-induced increase in [Ca2+] and 45Ca2+ uptake in acutely dissociated brain cells derived from adult rats. Brain Res., 570:347–353.

    Google Scholar 

  25. Sanfeliu, C., Hunt, A. and Patel, A. 1990. Exposure to N-methyl-D-aspartate increases release of arachodonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res., 526:241–248.

    Google Scholar 

  26. Lafon, F. L., Rondoria, G. M., Manzoni, O., Natole, L., and Bockhart, M. 1994. The role of free radicals in NMDA-dependant neurotoxicity. Prog. Brain Res., 103:381–90.

    Google Scholar 

  27. Pigott, J. P., Donovan, D. L., Fink, J. A., and Sharp, W. V. 1988. Experimental pharmacologic cerebroprotection. J. Vasc. Surg., 7:635–630.

    Google Scholar 

  28. Palmer, C., Vannucci, R. C., and Towfyhi, J. 1990. Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatr. Res., 27:332–336.

    Google Scholar 

  29. Patt, A., Harken, A. H., Burton, L. K., Rodell, T. C., Piermattei, D., Schorr, W. J., Parker, N. B., Berger, E. M., Horesh, I. R., Terada, L. S., Linas, S. L., Cheronis, J. C., and Repine, J. E. 1988. Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J. Clin. Invest., 81:1556–1562.

    Google Scholar 

  30. Mink, R. B., Dutka, A. J., and Hallenbeck, J. K. 1991. Allopurinol pretreatment improves evoked response following global cerebral ischemia in dogs. Stroke, 22:660–665.

    Google Scholar 

  31. Das, D. K., Engelman, R. M., Clement, R., Otani, H., Prasad, M. R., and Rao, P. S. 1987. Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem. Biophys. Res. Comm., 148:314–319.

    Google Scholar 

  32. Fauré, M., Lissi, E. A., and Videla, L. A. 1990. Antioxidant capacity of allopurinol in biological systems. Biochem. International, 21:357–366.

    Google Scholar 

  33. Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, G., and Gutteridge, J. M. C. 1987. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett., 213:23–28.

    Google Scholar 

  34. Ko, K. M., and Godin, D. V. 1990. Inhibition of transitional ion-catalyzed ascorbate oxidation and lipid peroxidation by allopurinol and oxypurinol. Biochem. Pharm., 40:803–809.

    Google Scholar 

  35. Mishra, O. P., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. C. 1989. Lipid peroxidation as the mechanism of modification of the affinity of the Na+,K+-ATPase active sites for ATP, K+, Na+, and strophanthin in vitro. Neurochem. Res., 14:845–851.

    Google Scholar 

  36. Razdan, B., Marro, P. J., Tammela, O., Goel, R., Mishra, O. P. and Delivoria-Papadopoulos, M. 1988. Selective sensitivity of synaptosomal membrane function to cerebral cortical hypoxia in newborn piglets. Brain Res., 600:308–314.

    Google Scholar 

  37. Hanneberry, R. 1986. The role of neuronal energy in the neurotoxicity of excitatory amino acids. Neurobiol. Aging, 10:611–613.

    Google Scholar 

  38. Williams, G. D., Palmer, C., Heitjan, D. F., and Smith, M. B. 1992. Allopurinol preserves cerebral energy metabolism during perinatal hypoxia-ischemia: a 31P NMR study in unanesthetized immature rats. Neurosci. Lett., 144:103–106.

    Google Scholar 

  39. Sciotti, V., Roche, F., Grabb, M., and Van Wylen, D. 1992. Adenosine receptor blockade augments interstitial fluid levels of excitatory amino acids during cerebral ischemia. J. Cereb. Blood Flow Metab., 12:646–655.

    Google Scholar 

  40. Trussel, L., and Jackson, M. 1985 Adenosine-activated potassium conductances in culture striatal neurons. Proc. Natl. Acad. Sci. USA, 82:4857–4861.

    Google Scholar 

  41. Lee, K. S., and Lowenkoft, T. 1993. Endogenous adenosine delays the onset of hypoxic depolarization in the rat hippocampus in vitro via an action at A1 receptors. Brain Res., 609:313–315.

    Google Scholar 

  42. de Mendonça, A., and Ribeiro, J. A. 1993. Adenosine inhibits the NMDA receptor-mediated excitatory postsynaptic potential in the hippocampus. Brain Res., 606:351–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marro, P.J., Andersen, C.B., Mishra, O.P. et al. Effect of Allopurinol on Hypoxia-Induced Modification of the NMDA Receptor in Newborn Piglets. Neurochem Res 24, 1301–1306 (1999). https://doi.org/10.1023/A:1020985325785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020985325785

Navigation