Skip to main content
Log in

Hybridization of antisense oligonucleotides with yeast tRNAPhe: factors determining the efficiency of interaction

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

With the object of elucidating the factors that affect the rate and efficiency of oligonucleotide hybridization with complementary regions in natural RNA, the interaction of tRNAPhe and in vitro transcript of this tRNA with synthetic oligonucleotides matching the 32—61 region comprising the variable loop and anticodon and TΨC stems of the molecule was studied in detail. Gel retardation was used to assay thermodynamic and kinetic parameters of tRNA interaction with oligonucleotides. Oligonucleotide hybridization rates do not depend on the oligonucleotide length and are determined by the stability of RNA structure within the binding site. The rate constant for hybridization correlates with the number of base pairs in the RNA opened during binding with the oligonucleotide. Factors stabilizing the tRNA secondary structure (the presence of Mg2+ ions, low temperature, hypermodified bases) decrease significantly both the rate and efficiency of hybridization. Analysis of the tRNAPhe structure in the presence of an oligonucleotide shows that binding of oligonucleotides with the 45—61 region of tRNAPhe results only in unfolding of the TΨC hairpin and does not disturb the secondary structure of the rest of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Crooke, Methods Enzymol., 2000, 313, 3.

    Google Scholar 

  2. D. J. Ecker, in Antisense research and applications, Eds. S. T. Crooke and B. Lebleau, CRC Press, Boca Raton, 1993, 387.

    Google Scholar 

  3. S. Baskerville and A. D. Ellington, Curr. Biol., 1995, 5, 120.

    Google Scholar 

  4. R. T. Batey, R. P. Rambo, and J. A. Doudna, Angew. Chem. Int., Ed. Engl., 1999, 38, 2326.

    Google Scholar 

  5. A. D. Branch, Trends Biochem. Sci., 1998, 23, 45.

    Google Scholar 

  6. R. A. Stull, G. Zon, and F. C. Szoka, Jr., Antisense Nucleic Acid Drug. Dev., 1996, 6(3), 221.

    Google Scholar 

  7. K. U. Mir and E. M. Southern, Nature Biotechnol., 1999, 17, 788.

    Google Scholar 

  8. Y. Kumazawa, T. Yokogawa, H. Tsurui, K. Miura, and K. Watanabe, Nucleic Acids Res., 1992, 20, 2223.

    Google Scholar 

  9. T. Kanda, K. Takai, S. Yokoyama, and H. Takaku, Bioorg. Med. Chem., 2000, 8, 675.

    Google Scholar 

  10. V. Petyuk, R. Serikov, V. Tolstikov, V. Potapov, R. Giege, M. Zenkova, and V. Vlassov, Nucleosides, Nucleotides Nucleic Acids, 2000, 19, 1145.

    Google Scholar 

  11. V. Petuyk, M. Zenkova, R. Giege, and V. V. Vlassov, FEBS Letters, 1999, 444, 217.

    Google Scholar 

  12. V. A. Petyuk, M. A. Zenkova, R. Giege, and V. V. Vlassov, Molekulyar. Biol., 2000, 34, 879 [Mol. Biol., 2000, 34 (Engl. Transl.)].

    Google Scholar 

  13. J. F. Milligan and O. C. Uhlenbeck, Methods Enzymol., 1989, 180, 51.

    Google Scholar 

  14. J. R. Sampson and O. C. Uhlenbeck, Proc. Natl. Acad. Sci. USA, 1988, 85, 1033.

    Google Scholar 

  15. T. E. England, A. G. Bruce, and O. C. Uhlenbeck, Methods Enzymol., 1980, 65, 65.

    Google Scholar 

  16. D. Lane, P. Prentki, and M. Chandler, Microbiol. Rev., 1992, 56(4), 509.

    Google Scholar 

  17. J. Meador, B. Cannon, V. J. Cannistraro, and D. Kennell, Eur. J. Biochem., 1990, 187, 549.

    Google Scholar 

  18. M. I. Dobrikov, S. A. Gaidamakov, A. A. Koshkin, T. I. Guinutdinov, N. P. Luk´yanchuk, G. V. Shishkin, and V. V. Vlassov, Bioorgan. Khim., 1997, 23, 191 [Russ. J. Bioorg. Chem., 1997, 23 (Engl. Transl.)].

    Google Scholar 

  19. M. Sprinzl, Eur. J. Biochem., 1974, 49, 595.

    Google Scholar 

  20. J. D. Robertus, J. E. Ladner, J. T. Finch, D. Rhodes, R. S. Brown, B. F. Clark, and A. Klug, Nature, 1974, 250, 546.

    Google Scholar 

  21. O. C. Uhlenbeck, J. Mol. Biol., 1972, 65, 25.

    Google Scholar 

  22. N. Sugimoto, S. Nakano, M. Katoh, A. Matsumura, H. Nakamuta, T. Ohmichi, M. Yoneyama, and M. Sasaki, Biochemistry, 1995, 34, 11211.

    Google Scholar 

  23. M. E. Craig, D. M. Crothers, P. Doty, J. Mol. Biol., 1971, 62, 383.

    Google Scholar 

  24. V. Patzel and G. Szakiel, Nucleic Acids Res., 2000, 13, 2462.

    Google Scholar 

  25. C. R. Cantor and P. R. Schimmel, in Biophysical Chemistry, Part 3: The Behavior of Biological Macromolecules, W. H. Freeman, San Francisco, 1980, 3, 23.

    Google Scholar 

  26. O. Pongs and E. Reinwald, Biochem. Biophys. Res. Commun., 1973, 50, 357.

    Google Scholar 

  27. P. Narayan and F. Ramirez, Biochim. Biophys. Acta, 1978, 518, 539.

    Google Scholar 

  28. P. F. Agris, A. Malkiewicz, R. Guenther, M. Basti, R. Sengupta, and J. Stuart, Nucleic Acids Symp. Ser., 1995, 33, 254.

    Google Scholar 

  29. M. Homann, K. Rittner, and G. Sczakiel, J. Mol. Biol., 1993, 233, 7.

    Google Scholar 

  30. K. Rittner, C. Burmester, and G. Sczakiel, Nucleic Acids Res., 1993, 21, 1381.

    Google Scholar 

  31. R. Kronenwett, R. Haas, and G. Sczakiel, J. Mol. Biol., 1996, 259, 632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serikov, R.N., Petyuk, V.A., Vlassov, V.V. et al. Hybridization of antisense oligonucleotides with yeast tRNAPhe: factors determining the efficiency of interaction. Russian Chemical Bulletin 51, 1156–1165 (2002). https://doi.org/10.1023/A:1020975724157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020975724157

Navigation