Skip to main content
Log in

Classification of Gauge Orbit Types for SU(n)-Gauge Theories

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

A method for determining the orbit types of the action of the group of gauge transformations on the space of connections for gauge theories with gauge group SU(n) in spacetime dimension d≤4 is presented. The method is based on the one-to-one correspondence between orbit types and holonomy-induced reductions of the underlying principal SU(n)-bundle. It is shown that the orbit types are labelled by certain cohomology elements of spacetime satisfying two relations. Thus, for every principal SU(n)-bundle the corresponding stratification of the gauge orbit space can be explicitly determined. As an application, a criterion characterizing kinematical nodes for physical states in Yang–Mills theory with the Chern–Simons term proposed by Asorey et al. is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbati, M. C., Cirelli, R., Manià, A. and Michor, P.: The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6(2) (1989), 215–235.

    Google Scholar 

  2. Abbati, M. C., Cirelli, R. and Manià, A.: The orbit space of the action of gauge transformation group on connections, J. Geom. Phys. 6(4) (1989), 537–557.

    Google Scholar 

  3. Asorey, M., Falceto, F., López, J. L. and Luzón, G.: Nodes, monopoles, and confinement in 2 + 1-dimensional gauge theories, Phys. Lett. B 345 (1995), 125–130.

    Google Scholar 

  4. Asorey, M.: Maximal non-Abelian gauges and topology of the gauge orbit space, Nuclear Phys. B 551 (1999), 399–424.

    Google Scholar 

  5. Avis, S. J. and Isham, C. J.: Quantum field theory and fibre bundles in a general space-time, In: M. Levy and S. Deser (eds), Recent Developments in Gravitation (Cargèse 1978), Plenum Press, New York, 1979, pp. 347–401.

    Google Scholar 

  6. Borel, A.: Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Math. 36, Springer, New York, 1967.

    Google Scholar 

  7. Bredon, G. E.: Introduction to Compact Transformation Groups, Academic Press, New York, 1972.

    Google Scholar 

  8. Bredon, G. E.: Topology and Geometry, Springer, New York, 1993.

    Google Scholar 

  9. Dodson, C. T. J. and Parker, P. E.: A User's Guide to Algebraic Topology, Kluwer Acad. Publ., Dordrecht, 1997.

    Google Scholar 

  10. Emmrich, C. and Römer, H.: Orbifolds as configuration spaces of systems with gauge symmetries, Comm. Math. Phys. 129 (1990), 69–94.

    Google Scholar 

  11. Fomenko, A. T., Fuchs, D. B. and Gutenmacher, V. L.: Homotopic Topology, Akadémiai Kiadó, Budapest, 1986.

    Google Scholar 

  12. Ford, C., Tok, T. and Wipf, A.: Abelian projection on the torus for general gauge groups, Nuclear Phys. B 548 (1999), 585–612.

    Google Scholar 

  13. Ford, C., Tok, T. and Wipf, A.: SU(N)-gauge theories in Polyakov gauge on the torus, Phys. Lett. B 456 (1999), 155–161.

    Google Scholar 

  14. Fuchs, J., Schmidt, M. G. and Schweigert, C.: On the configuration space of gauge theories, Nuclear Phys. B 426 (1994), 107–128.

    Google Scholar 

  15. Heil, A., Kersch, A., Papadopoulos, N. A., Reifenhäuser, B. and Scheck, F.: Structure of the space of reducible connections for Yang-Mills theories, J. Geom. Phys. 7(4) (1990), 489–505.

    Google Scholar 

  16. Heil, A., Kersch, A., Papadopoulos, N. A., Reifenhäuser, B. and Scheck, F.: Anomalies from nonfree action of the gauge group, Ann. Phys. 200 (1990), 206–215.

    Google Scholar 

  17. Hirzebruch, F.: Topological Methods in Algebraic Geometry, Springer, New York, 1978.

    Google Scholar 

  18. Howe, R.: θ-series and invariant theory, In: Automorphic Forms, Representations, and Lfunctions, Proc. Sympos. Pure Math. 33, part 1, Amer. Math. Soc., Providence, 1979, pp. 275–285.

    Google Scholar 

  19. Husemoller, D.: Fibre Bundles, McGraw-Hill, New York, 1966; Springer, New York, 1994.

    Google Scholar 

  20. Isham, C. J.: Space-time topology and spontaneous symmetry breaking, J. Phys. A 14 (1981), 2943–2956.

    Google Scholar 

  21. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. I, Wiley-Interscience, New York, 1963.

    Google Scholar 

  22. Kondracki, W. and Rogulski, J.: On the notion of stratification, Demonstratio Math. 19 (1986), 229–236.

    Google Scholar 

  23. Kondracki, W. and Rogulski, J.: On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. 250, Panstwowe Wydawnictwo Naukowe, Warsaw, 1986.

    Google Scholar 

  24. Kondracki, W. and Sadowski, P.: Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3(3) (1986), 421–433.

    Google Scholar 

  25. Massey, W. S.: A Basic Course in Algebraic Topology, Springer, New York, 1991.

    Google Scholar 

  26. Mitter, P. K. and Viallet, C.-M.: On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981), 457–472.

    Google Scholar 

  27. Moeglin, C., Vignéras, M.-F. and Waldspurger, J.-L.: Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer, New York, 1987.

    Google Scholar 

  28. Palais, R. S.: Foundations of Global Nonlinear Analysis, Benjamin, New York, 1968.

    Google Scholar 

  29. Przebinda, T.: On Howe's duality theorem, J. Funct. Anal. 81 (1988), 160–183.

    Google Scholar 

  30. Rubenthaler, H.: Les paires duales dans les algèbres de Lie réductives, Astérisque 219 (1994).

  31. Schmidt, M.: Classification and partial ordering of reductive Howe dual pairs of classical Lie groups, J. Geom. Phys. 29 (1999), 283–318.

    Google Scholar 

  32. Singer, I. M.: Some remarks on the Gribov ambiguity, Comm. Math. Phys. 60 (1978), 7–12.

    Google Scholar 

  33. Skolem, T.: Diophantische Gleichungen, Springer, Berlin, 1938.

    Google Scholar 

  34. Steenrod, N.: The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, NJ, 1951.

    Google Scholar 

  35. Whitehead, G. W.: Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, New York, 1978.

    Google Scholar 

  36. Woodward, L. M.: The classification of principal PU(n)-bundles over a 4-complex, J. London Math. Soc. (2) 25 (1982), 513–524.

    Google Scholar 

  37. Rudolph, G., Schmidt, M. and Volobuev, I. P.: Partial ordering of gauge orbit types for SU(n)-gauge theories, J. Geom. Phys. 42 (2002), 106–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, G., Schmidt, M. & Volobuev, I.P. Classification of Gauge Orbit Types for SU(n)-Gauge Theories. Mathematical Physics, Analysis and Geometry 5, 201–241 (2002). https://doi.org/10.1023/A:1020968206969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020968206969

Navigation