Advertisement

Neurochemical Research

, Volume 27, Issue 10, pp 1113–1121 | Cite as

Statistical Analysis of Multiplex Brain Gene Expression Images

  • Alex Ossadtchi
  • Vanessa M. Brown
  • Arshad H. Khan
  • Simon R. Cherry
  • Thomas E. Nichols
  • Richard M. Leahy
  • Desmond J. Smith
Article

Abstract

Analysis of variance (ANOVA) was employed to investigate 9,000 gene expression patterns from brains of both normal mice and mice with a pharmacological model of Parkinson's disease (PD). The data set was obtained using voxelation, a method that allows high-throughput acquisition of 3D gene expression patterns through analysis of spatially registered voxels (cubes). This method produces multiple volumetric maps of gene expression analogous to the images reconstructed in biomedical imaging systems. The ANOVA model was compared to the results from singular value decomposition (SVD) by using the first 42 singular vectors of the data matrix, a number equal to the rank of the ANOVA model. The ANOVA was also compared to the results from non-parametric statistics. Lastly, images were obtained for a subset of genes that emerged from the ANOVA as significant. The results suggest that ANOVA will be a valuable framework for insights into the large number of gene expression patterns obtained from voxelation.

ANOVA microarray mouse Parkinson's disease singular value decomposition voxelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Brown, V. M., Ossadtchi, A., Khan, A. H., Cherry, S. R., Leahy, R. M., and Smith, D. J. 2002. High-throughput imaging of brain gene expression. Genome Res. 12:244-254.Google Scholar
  2. 2.
    Brown, V. M., Ossadtchi, A., Khan, A. H., Yee, S., Lacan, G., Melega, W. P., Cherry, S. R., Leahy, R. M., and Smith, D. J. 2002. Multiplex three dimensional brain gene expression mapping in a mouse model of Parkinson's disease. Genome Res. 12:868-884.Google Scholar
  3. 3.
    Peterson, A. S. 2002. Pixelating the brain. Genome Res. 12: 217-218.Google Scholar
  4. 4.
    Kerr, M. K., Martin, M., and Churchill, G. A. 2000. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7:819-837.Google Scholar
  5. 5.
    Kerr, M. K. and Churchill, G. A. 2001. Statistical design and the analysis of gene expression microarray data. Genet. Res. 77: 123-128.Google Scholar
  6. 6.
    Kerr, M. K. and Churchill, G. A. 2001. Experimental design for gene expression microarrays. Biostatistics 2:183-201.Google Scholar
  7. 7.
    Sonsalla, P. K., Jochnowitz, N. D., Zeevalk, G. D., Oostveen, J. A., and Hall, E. D. 1996. Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res. 738:172-175.Google Scholar
  8. 8.
    Melega, W. P., Raleigh, M. J., Stout, D. B., Lacan, G., Huang, S. C., and Phelps, M. E. 1997. Recovery of striatal dopamine function after acute amphetamine-and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res. 766:113-120.Google Scholar
  9. 9.
    Williams, R. W. 2000. Mapping genes that modulate mouse brain development: a quantitative genetic approach. Pages 21-49, in Goffinet, A. F., and Rakic, P. (eds.), Mouse Brain Development, Springer, New York.Google Scholar
  10. 10.
    Rosen, G. D., Williams, A. G., Capra, J. A., Connolly, M. T., Cruz, B., Lu, L., Airey, D. C., Kulkarni, K., and Williams, R. W. 2000. The Mouse Brain Library @ www.mbl.org. Int. Mouse Genome Conf. 14:166. www.mbl.org.Google Scholar
  11. 11.
    Nichols, T. E. and Holmes, A. P. 2002. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15:1-25.Google Scholar
  12. 12.
    Little, R. J. A. and Rubin, D. B. 1987. Statistical Analysis with Missing Data, John Wiley & Sons, New York, NY.Google Scholar
  13. 13.
    Alter, O., Brown, P. O., and Botstein, D. 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97:10101-10106.Google Scholar
  14. 14.
    Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J., and Mazziotta, J. C. 1997. Human Brain Function, Academic Press Ltd., London, UK.Google Scholar
  15. 15.
    Hendler, R. W. and Shrager, R. I. 1994. Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners. J. Biochem. Biophys. Methods 28:1-33.Google Scholar
  16. 16.
    Hastie, T., Tibshirani, R., Eisen, M. B., Alizadeh, A., Levy, R., Staudt, L., Chan, W. C., Botstein, D., and Brown, P. 2000. ‘Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol.Google Scholar
  17. 17.
    Gene Ontology Consortium. http://www.geneontology.org/.Google Scholar
  18. 18.
    Sinharay, S., Stern, H. S., and Russell, D. 2001. The use of multiple imputation for the analysis of missing data. Psychol. Methods 6:317-329.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Alex Ossadtchi
    • 1
  • Vanessa M. Brown
    • 2
    • 3
  • Arshad H. Khan
    • 2
    • 3
  • Simon R. Cherry
    • 4
  • Thomas E. Nichols
    • 5
  • Richard M. Leahy
    • 1
  • Desmond J. Smith
    • 2
    • 3
  1. 1.Department of Electrical Engineering, Signal and Image Processing Institute, School of EngineeringUniversity of Southern CaliforniaLos Angeles
  2. 2.Department of Molecular and Medical Pharmacology, School of MedicineUniversity of CaliforniaLos Angeles
  3. 3.Crump Institute for Molecular Imaging, School of MedicineUniversity of CaliforniaLos Angeles
  4. 4.Department of Biomedical Engineering, College of EngineeringUniversity of CaliforniaDavis
  5. 5.Department of Biostatistics, School of Public HealthUniversity of MichiganAnn Arbor

Personalised recommendations