Skip to main content
Log in

Electrical Conductivity in General Relativity

  • Published:
Foundations of Physics Letters

Abstract

The general relativistic kinetic theory including the effect of a stationary gravitational field is applied to the electromagnetic transport processes in conductors. Then it is applied to derive the general relativistic Ohm’s law where the gravitomagnetic terms are incorporated. The total electric charge quantity and charge distribution inside conductors carrying conduction current in some relativistic cases are considered. The general relativistic Ohm’s law is applied to predict new gravitomagnetic and gyroscopic effects which can, in principle, be used to detect the Lense-Thirring and rotational fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Ehlers, “General relativity and kinetic theory,” in General Relativity and Cosmology, R. K. Sachs, ed. (Academic, 1971), pp. 1-70.

  2. A. Georgiou, “Relativistic transport equations for plasmas,” Class. Quantum Grav. 12, 1491-1501 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. G. Brodin and M. Marklund, “Parametric excitation of plasma waves by gravitational radiation,” Phys. Rev. Lett. 82, 3012-3015 (1999).

    Article  ADS  Google Scholar 

  4. K. Elsässer and S. Popel, “Plasma equations in general relativity,” Phys. Plasmas 4, 2348-2356 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. C. Kelly, “Electrical and thermal conductivities of a relativistic degenerate plasma,” Astrophys. J. 179, 599-606 (1973).

    Article  ADS  Google Scholar 

  6. V. F. Fateev, “Gyroscopic effect in coil conductors carrying electric current,” Sov. Tech. Phys. Lett. 15, 72-75 (1989).

    Google Scholar 

  7. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1973).

  8. G. Montani, R. Ruffini, and R. M. Zalaletdinov, “Gravitating macroscopic media in general relativity and macroscopic gravity,” Nuovo Cim. B 115, 1343-1354 (2000).

    ADS  Google Scholar 

  9. A. N. Kaufman, “Maxwell equations in nonuniformly moving media,” Ann. Phys. 18, 264-273 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. N. A. Chernikov, “The relativistic gas in the gravitational field,” Acta Phys. Polon. 23, 629-645 (1963); “Microscopic foundation of relativistic hydrodynamics,” ibid. 27, 465-489 (1964).

    MathSciNet  MATH  Google Scholar 

  11. S. R. de Groot, W. A. van Leuween, and Ch. G. van Weert, Relativistic Kinetic Theory (North-Holland, 1980).

  12. T. W. Darling, F. Rossi, G. I. Opat, and G. F. Moorhead, “The fall of charged particles under gravity: A study of experimental problems,” Rev. Mod. Phys. 64, 237-257 (1992).

    Article  ADS  Google Scholar 

  13. J. Anandan, “Relativistic thermoelectromagnetic gravitational effects in normal conductors and superconductors,” Phys. Lett. A. 105, 280-284 (1984).

    Article  ADS  Google Scholar 

  14. B. J. Ahmedov and L. Ya. Arifov, “Principles for detecting charge redistribution produced by fields of gravity and inertia inside conductors,” Gen. Rel. Grav. 26, 1187-1195 (1994).

    Article  ADS  Google Scholar 

  15. B. J. Ahmedov, “General relativistic galvano-gravitomagnetic effect in current carrying conductors,” Phys. Lett. A. 256, 9-14 (1999).

    Article  ADS  Google Scholar 

  16. B. J. Ahmedov, “General relativistic Ohm’s law and Coriolis force effects in rotating conductors,” Gravit. Cosmology 4, 139-141 (1998).

    ADS  MATH  Google Scholar 

  17. B. V. Vasil’ev, “Thermogyromagnetic effects,” Russian Physics JETP Letters 60, 47-50 (1994).

    ADS  Google Scholar 

  18. A. K. Jain, J. E. Lukens, and J. S. Tsai, “Test for relativistic gravitational effects on charged particles,” Phys. Rev. Lett. 58, 1165-1168 (1987).

    Article  ADS  Google Scholar 

  19. J. Lense, H. Thirring, “Über den Einfluss der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie,” Phys. Z. 19, 156-163 (1918).

    MATH  Google Scholar 

  20. B. Mashhoon, F. W. Hehl, and D. S. Theiss, “On the gravitational effects of rotating masses: The Thirring-Lense papers,” Gen. Rel. Grav. 16, 711-750 (1984).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmedov, B.J., Ermamatov, M.J. Electrical Conductivity in General Relativity. Found Phys Lett 15, 137–151 (2002). https://doi.org/10.1023/A:1020948024023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020948024023

Navigation