Skip to main content
Log in

A fast genetic algorithm for RNA secondary structure analysis

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A fast genetic algorithm GArna for mass calculations of RNA secondary structures through the Internet is proposed. The algorithm GArna was used to study the effects of nucleotide composition on characteristics of the secondary structure of random RNA sequences. A contextual characteristics for evaluation of the stability was proposed and the application of standard statistical tests for heterogeneous RNA samplings was justified. The structure-contextual characteristics by which the 5"-untranslated regions of high- and low-expression genes of dicot plants and mammals differ were found, and the results were interpreted in terms of secondary structure influence on translation initiation and on the general scheme of expression regulation. The application of the results obtained for the development of computer methods for RNA structural genomics, in particular, for RNA search in genome sequences, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Kolchanov, I. I. Titov, I. E. Vlassova, and V. V. Vlassov, Prog. Nucl. Acids Res. Mol. Biol., 1996, 53, 196.

    Google Scholar 

  2. M. Zuker, Curr. Opin. Struct. Biol., 2000, 10, 303.

    Google Scholar 

  3. D. F. Mathews, J. Sabina, M. Zuker, and D. H. Turner, J. Mol. Biol., 1999, 288, 911.

    Google Scholar 

  4. J. McCaskill, Biopolymers, 1990, 29, 1105.

    Google Scholar 

  5. A. A. Mironov and A. E. Kister, J. Biomol. Struct. Dyn., 1986, 4, 1.

    Google Scholar 

  6. A. Fernandez, Phys. Rev. (E), 1993, 48, 3107.

    Google Scholar 

  7. H. Ogata, Y. Akiyama, and M. Kanehisa, Nucl. Acids Res., 1995, 23, 419.

    Google Scholar 

  8. A. P. Gultyaev, F. H. D. van Batenburg, and C. W. A. Pleij, J. Mol. Biol., 1995, 250, 37.

    Google Scholar 

  9. G. Benedetti and S. Morosetti, Biophys. Chem., 1995, 55, 253.

    Google Scholar 

  10. K. M. Currey and B. A. Shapiro, Comput. Applic. Biosci., 1997, 13, 1.

    Google Scholar 

  11. V. Proutski, E. A. Gould, and E. C. Holmes, Nucl. Acids Res., 1997, 25, 1194.

    Google Scholar 

  12. I. I. Titov, V. A. Ivanisenko, and N. A. Kolchanov, Comput. Techn., 2000, 5, 48.

    Google Scholar 

  13. S. Forrest, Science, 1993, 261, 872.

    Google Scholar 

  14. D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, San Mateo, CA, 1989.

    Google Scholar 

  15. J. A. Jaeger, D. H. Turner, and M. Zuker, Proc. Natl. Acad. Sci. USA, 1989, 86, 7706.

    Google Scholar 

  16. A. V. Kochetov, M. P. Ponomarenko, A. S. Frolov, L. L. Kisselev, and N. A. Kolchanov, Bioinformatics, 1999, 15, 704.

    Google Scholar 

  17. E. Wingender, X. Chen, R. Hehl, H. Karas, I. Liebich, V. Matys, T. Meinhardt, M. Pruss, I. Reuter, and F. Schacherer, Nucl. Acids Res., 2000, 28, 316.

    Google Scholar 

  18. R. V. Davuluri, Y. Suzuki, S. Sugano, and M. Q. Zhang, Genome Res., 2000, 10, 1807.

    Google Scholar 

  19. J. P. Abrahams, M. van den Berg, E. van Batenburg, and C. W. A. Pleij, Nucl. Acids Res., 1990, 18, 3035.

    Google Scholar 

  20. W. Fontana, D. A. M. Konnings, P. F. Stadler, and P. Schuster, Biopolymers, 1993, 33, 1389.

    Google Scholar 

  21. N. Wirth, Algorithms and Data Structure, New Jersey 07632, Prentice-Hall, Inc., Englewood Cliffs, 1986.

  22. B. A. Shapiro, Comput. Applic. Biosci., 1988, 4, 387.

    Google Scholar 

  23. M. Zuker and D. Sankoff, Bull. Math. Biol., 1984, 46, 591.

    Google Scholar 

  24. W. Fontana, T. Griesmacher, W. Schnabl, P. F. Stadler, and P. Schuster, Monatsh. Chemie, 1991, 122, 795.

    Google Scholar 

  25. H. M. Martinez, Nucl. Acids Res., 1984, 12, 323.

    Google Scholar 

  26. R. Nussinov and G. Pieczenik, J. Theor. Biol., 1984, 106, 244.

    Google Scholar 

  27. E. Rivas and S. R. Eddy, Bioinformatics, 2000, 16, 583.

    Google Scholar 

  28. S. Y. Le and J. V. Maizel, Nucl. Acids Res., 1997, 25, 362.

    Google Scholar 

  29. W. Seffens and D. Digby, Nucl. Acids Res., 1999, 27, 1578.

    Google Scholar 

  30. P. G. Higgs, J. Phys. I. France, 1993, 3, 43.

    Google Scholar 

  31. M. Kozak, Biochimie, 1994, 76, 815.

    Google Scholar 

  32. G. Bernardi and G. Bernardi, J. Mol. Evol., 1986, 24, 1.

    Google Scholar 

  33. G. Bernardi, Gene, 2000, 241, 3.

    Google Scholar 

  34. I. I. Titov, D. G. Vorobiev, and N. A. Kolchanov, Intern. Conf. on Bioinformatics of Genome Regulation and Structure BGRS-2000 (Novosibirsk, August 7-11, 2000), Novosibirsk, 2000, 138.

  35. H. Caron, B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M.-C. Hermus, R. van Asperen, K. Boon, P. A. Voute, S. Heisterkamp, A. van Kampen, and R. Versteeg, Science, 2001, 291, 1289.

    Google Scholar 

  36. V. Bourdeau, G. Ferbeyre, M. Pageau, B. Paquin, and R. Cedergren, Nucleic Acids Res., 1999, 27, 4457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titov, I.I., Vorobiev, D.G., Ivanisenko, V.A. et al. A fast genetic algorithm for RNA secondary structure analysis. Russian Chemical Bulletin 51, 1135–1144 (2002). https://doi.org/10.1023/A:1020945806836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020945806836

Navigation