Skip to main content
Log in

Electrodeposition of cobalt from gluconate electrolyte

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt electrodeposited onto steel substrate was carried out from solutions containing cobalt sulfate, boric acid and sodium gluconate. The study dealt with the influence of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency, and throwing power, as well as the throwing index of these baths. The microhardness of cobalt electrodeposited from gluconate baths is generally high and higher than that of cobalt deposited under similar conditions from sulfate, chloride, bromide and acetate baths. The surface morphology of the as-deposited cobalt was investigated using scanning electron microscopy (SEM) while the structure was studied using X-ray diffraction analysis. Cyclic voltammetric, as well as current-transient, techniques recorded on a glassy carbon electrode suggested that the deposition of cobalt from gluconate bath occurs via a nucleation process under charge transfer control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Su, M.M. Chen, J. Lo and R.E. Lee, J. Appl. Phys. 63 (1988) 4022.

    Google Scholar 

  2. H.F. Quinn and I.M. Croll, 'Advances in X-ray Analysis', Vol. 4 (Plenum Press, New York, 1980), p. 151.

    Google Scholar 

  3. P.N. Bartlett, P.N. Birkin, M.A. Ghanem, P. de Groot and M. Sawicki, J. Electrochem. Soc. 148 (2001) C119.

    Google Scholar 

  4. L. Peter, A. Cziraki, L. Pogany, Z. Kupay, I. Bakonyi, M. Uhlemann, M. Herrich, B. Arnold, T. Bauer and K. Wetzig, J. Electrochem. Soc. 148 (2001) C168.

    Google Scholar 

  5. I. Tabakovic, S. Riemer, V. Inture, P. Jallen and A. Thayer, J. Electrochem. Soc. 147 (2000) 219.

    Google Scholar 

  6. J.P. Celis, P. Cavallotti, J. Machado Da Silva and A. Zielonka, Trans. Inst. Met. Finish. 76(5) (1998) 163.

    Google Scholar 

  7. J.K. Dennis, K.J. Lodge and F.A. Still, Trans. IMF 55 (1977) 17.

    Google Scholar 

  8. J.K. Dennis and D. Jones, Surf. Technol. 12 (1981) 57.

    Google Scholar 

  9. I.M. Croll and B.M. May, in L.T. Romanikiw and D.R. Turner (Eds), 'Electrodeposition Technology, Theory and Practice' (The Electrochem. Society Proceeding Seriers, Pennington, NJ, 1987), PV87-17, p. 295.

    Google Scholar 

  10. C.Q. Cui, S.P. Jiang and A.C.C. Tseung, Electrochem. Soc. 137 (1990) 3418.

    Google Scholar 

  11. A.M. Abd El Halim, M.H. Fawzy and M.A.M. Ibrahim, Trans. Inst. Met. Finish. 71(2) (1993) 48.

    Google Scholar 

  12. S.S. Abd El Rehim, S.M. Abd El Wahaab, M.A.M. Ibrahim and M.A. Dankeria, J. Chem. Technol. Biotechnol. 73 (1998) 369.

    Google Scholar 

  13. L. Brossared, Mater. Chem. Phys. 27 (1991) 235.

    Google Scholar 

  14. C.Q. Cu, S.P. Jiang and A.C.C. Tseung, J. Electrochem. Soc. 138 (1991) 1001.

    Google Scholar 

  15. A.B. Soto, E.M. Arce, M. Palomar-Pardave and I. Gonzalez, Electrochim. Acta 41 (1996) 2647.

    Google Scholar 

  16. M. Palomar-Pardave, I. Gonzalez, A.B. Soto and E.M. Arce, J. Electroanal. Chem. 443 (1998) 125.

    Google Scholar 

  17. A. Suzaki and T. Watanabe, J. Japan Inst. Metals 64 (2000) 869.

    Google Scholar 

  18. S. Field, Met. Ind. (London) 44 (1934) 614.

    Google Scholar 

  19. R.V. Jelinek and H.F. David, J. Electrochem. Soc. 104 (1957) 279.

    Google Scholar 

  20. M.A.M. Ibrahim, J. Chem. Technol. Biotechnol. 75 (2000) 745.

    Google Scholar 

  21. C. Karwas and T. Hepel, J. Electrochem. Soc. 136 (1989) 1672.

    Google Scholar 

  22. L.G. Joyce and W.F. Pickering, Aust. J. Chem. 18 (1965) 783.

    Google Scholar 

  23. T.M. Maskin, B.Z. Znbova and D.S. Veselinovic, J. Serb. Chem. Soc. 56 (1991) 337.

    Google Scholar 

  24. S.S. Abd El Rehim, S.M. Abd El Wahaab, S.M. Rashwan and Z.M. Anwar, J. Chem. Technol. Biotechnol. 75 (2000) 237.

    Google Scholar 

  25. C. Karwas and T. Hepel, J. Electrochem. Soc. 135 (1988) 839.

    Google Scholar 

  26. J. Horkan, J. Electrochem. Soc. 126 (1979) 1861.

    Google Scholar 

  27. B. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.

    Google Scholar 

  28. M. Gonsalves and D. Pletcher, J. Electroanal. Chem. 285 (1990) 185.

    Google Scholar 

  29. R. Greef, R. Peak, L.M. Peter, D. Pletcher and J. Robinson, 'Instrumental Methods in Electrochemistry' (Ellis Horwood, Chichester, UK, 1985), Chapter 9.

    Google Scholar 

  30. A.M. Abd El Halim, M.H. Fawzy and M.A.M. Ibrahim, J. Electrochem. Soc. Jpn (Denki Kagaku) 5 (1993) 1270.

    Google Scholar 

  31. E.A. Abd El Maguid, S.S. Abd El Rehim and E.M. Mostafa, Trans. IMF 77 (1999) 188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd El Rehim, S., Ibrahim, M.A. & Dankeria, M. Electrodeposition of cobalt from gluconate electrolyte. Journal of Applied Electrochemistry 32, 1019–1027 (2002). https://doi.org/10.1023/A:1020945031502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020945031502

Navigation