Skip to main content
Log in

Preference for Acyanogenic White Clover (Trifolium repens) in the Vole Arvicola terrestris: I. Experiments with Two Varieties

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We report experimental results showing that, under both laboratory conditions as well as in outdoor enclosures, the fossorial vole Arvicola terrestris preferentially feeds on acyanogenic white clover (Trifolium repens) when offered the choice between two varieties (Ladino and Aran) differing highly in their content in cyanogenic glycosides. We also observed that the voles adapted their diet and reduced their relative consumption of the cyanogenic variety during experiments conducted for two to three weeks in outdoor enclosures as compared to shorter tests conducted for 48 hr in laboratory cages. In addition, we report a similar preference for the acyanogenic Ladino variety for the slugs Arion ater and A. subfuscus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Batzli, G. O. 1992. Dynamics of small mammal populations: a review, pp. 831-850, in D. R. McCullough and R. H. Barrett (eds.). Wildlife 2001: Populations. Elsevier Applied Science, London.

    Google Scholar 

  • Caradus, J. R. 1986. World checklist of white clover varieties. N.Z. J. Exp. Agric. 14:119-164.

    Google Scholar 

  • Compton, S. G., Newsome, D., and Jones, D. A. 1983. Selection for cyanogenesis in the leaves and petals of Lotus corniculatus L. at high latitudes. Oecologia (Berlin) 60:353-358.

    Google Scholar 

  • Cooper-Driver, G. A., and Swain, T. 1976. Cyanogenic polymorphism in bracken in relation to herbivore predation. Nature 260:604.

    Google Scholar 

  • Corkill, L. 1952. Cyanogenesis in white clover (Trifolium repens L.). VI. Experiments with high-glucoside and glucoside-free strains. N.Z. J. Sci. Technol. A. 34:1-16.

    Google Scholar 

  • Crawford-Sidebotham. T. J. 1972. The role of slugs and snails in the maintenance of cyanogenesis polymorphisms of Lotus corniculatus and Trifolium repens. Heredity 28:405-411.

    Google Scholar 

  • Daday, H. 1954. Gene frequencies in wild populations of Trifolium repens II. Distribution by altitude. Heredity 8:377-384.

    Google Scholar 

  • Ellis, W. M., Keymer, R. J., and Jones, D. A. 1977. The defensive function of cyanogenesis in natural populations. Experientia 33:309-311.

    Google Scholar 

  • Grenot, C., Pascal, M., Buscarlet, L., Francaz, J.-M., and Sellami, M. 1984. Water and energy balance in the water vole (Arvicola terrestris scherman) in the laboratory and in the field. (Haut-Doubs, France). Comp. Biochem. Physiol. 78A:185-196.

    Google Scholar 

  • Gutzwiller, A. 1993. The effect of a diet containing cyanogenetic glycosides on the selenium status and the thyroid function of sheep. Anim. Prod. 57:415-419.

    Google Scholar 

  • Hegnauer, R. 1986. Chemotaxonomie der Pflanzen, Vol. VII. Birkäuser Verlag, Basel.

    Google Scholar 

  • Hruska, A. J. 1988. Cyanogenic glucosides as defense compounds. A review of the evidence. J. Chem. Ecol. 14:2213-2217.

    Google Scholar 

  • Hughes, M. A. 1981. The genetic control of plant cyanogenesis, pp. 494-508, in B. Vennesland, C. J. Knowles, E. E. Conn, J. Westley, and J. Wissing (eds.). Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Jones, D. A. 1962. Selective eating of the acyanogenic form of the plant Lotus corniculatus L. by various animals. Nature 193:1109-1110.

    Google Scholar 

  • Jones, D. A. 1966. On the polymorphism of cyanogenesis in Lotus corniculatus. I. Selection by animals. Can. J. Genet. Cytol. 8:556-567.

    Google Scholar 

  • Jones, D. A. 1988. Cyanogenesis in animal-plant interactions, pp. 151-170, in D. Evered and S. Harnett (eds.). Cyanide Compounds in Biology. John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Jones, D. A. 1998. Why are so many food plants cyanogenic? Phytochemistry 47:155-162.

    Google Scholar 

  • Kakes, P. 1985. Linamarase and other beta glucosidases are present in the cell walls of Trifolium repens leaves. Planta Berl. 166:156-160.

    Google Scholar 

  • Kakes, P., and Eeltink, H. 1985. The presence of a specialized-β-glycosidase: linamarase, in the leaves of Trifolium repens is controlled by the gene Li. Z. Naturforsch. 40c:509-513.

    Google Scholar 

  • Kopp, R. 1988. Les choix alimentaires de la forme fouisseuse du Campagnol terrestre (Arvicola terrestris scherman): Essais en terrarium. EPPO Bull. 18:394-400.

    Google Scholar 

  • Kopp, R. 1993. Etude de l'impact de la forme fouisseuse du campagnol terrestre, Arvicola terrestris scherman (Shaw), sur la végétation d'une prairie. PhD thesis. Lausanne, Switzerland.

    Google Scholar 

  • Krebs, C. J., and Myers, J. H. 1974. Population cycles in small mammals. Adv. Ecol. Res. 8:267-399.

    Google Scholar 

  • Lehmann, J., Meister, E., Gutzwiller, A., Jans, F., Charles, J.-P., and Blum, J. 1991. Peut-on utiliser des variétés de trèfle blanc (Trifolium repens L.) à forte teneur en acide cyanhydrique? Rev. Suisse Agric. 23:107-112.

    Google Scholar 

  • Lidicker, W. Z., Jr. 1988. Solving the enigma of microtine “cycles.” J. Mammal. 69:225-235.

    Google Scholar 

  • Pulss, G. 1962. Untersuchungen zur Isolierung und Bestimmung von Blausäure in pflanzischen Material. Z. Anal. Chem. 190:402-409.

    Google Scholar 

  • Ramnani, A. D., and Jones, D. A. 1985. Flexibility in cyanogenic phenotype of Lotus corniculatus in response to low fluctuating temperatures. Pak. J. Bot. 17:9-24.

    Google Scholar 

  • Saucy, F. 1988. Description des cycles pluriannuels d'Arvicola terrestris scherman (Shaw) en Suisse occidentale par la méthode de l'analyse des séries temporelles. EPPO Bull. 18:401-413.

    Google Scholar 

  • Saucy, F. 1994. Density dependence in time series of the fossorial form of the water vole, Arvicola terrestris. Oikos 71:381-392.

    Google Scholar 

  • Seigler, D. S. 1991. Cyanide and cyanogenic glycosides, pp. 35-77, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, San Diego.

    Google Scholar 

  • Sherbrooke, W. C. 1976. Differential acceptance of toxic jojoba seed (Simmondsia chinensis) by four Sonoran desert heteromyid rodents. Ecology 57:596-602.

    Google Scholar 

  • Speijers, G. 1993. Cyanogenic glycosides, pp. 299-337, in Toxical Evaluation of Certain Food Additives and Naturally Occurring Toxicants. WHO, Geneva.

    Google Scholar 

  • Till-Bottraud, I., Kakes, P., and DommÉe, B. 1988. Variable phenotypes and stable distribution of the cyanotypes of Trifolium repens L. in southern France. Acta Oecol. Oecol. Plant. 9:393-404.

    Google Scholar 

  • Williams, W. M. 1987. White clover taxonomy and biosystematics, pp. 323-343, in M. J. Baker and W. M. Williams (eds.). White Clover. C.A.B. Int., Wallingford, Oxon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saucy, F., Studer, J., Aerni, V. et al. Preference for Acyanogenic White Clover (Trifolium repens) in the Vole Arvicola terrestris: I. Experiments with Two Varieties. J Chem Ecol 25, 1441–1454 (1999). https://doi.org/10.1023/A:1020943313142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020943313142

Navigation