Skip to main content
Log in

Synergistic effects of novel battery manufacturing processes for lead–acid batteries. Part I: Charge/discharge cycling of batteries

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The present research aimed to ascertain if the merging of novel battery manufacturing processes could achieve an enhancement in the improvement of battery cycle-life. We found that the melding of novel battery manufacturing processes leads to synergistic effects with regard to the cycling performance of lead–acid batteries. The novel battery manufacturing processes employed in this study include: (i) grid cleaning; (ii) positive active material compression; and (iii) conductive additives in the positive paste. It was found that a combination of positive active material compression and grid cleaning approximately doubles the durability of batteries and is consistent with the additive effects of the individual treatments, while a combination of positive active material compression and conductive additives yields an approximate 30% boost in performance compared to the additive effects of the isolated treatments. Synergistic effects were not noted for other combinations of the aforementioned battery manufacturing practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Hollenkamp, K.K. Constanti, M.J. Koop, Apâteanu, M. Calabek and K. Micka, J. Power Sources 48 (1994) 195.

    Google Scholar 

  2. D. Pavlov, J. Power Sources 53 (1995) 9.

    Google Scholar 

  3. N.E. Bagshaw, J. Power Sources 64 (1997) 91.

    Google Scholar 

  4. J. Fouache, J. Power Sources 78 (1999) 13.

    Google Scholar 

  5. L. Apâteanu, A.F. Hollenkamp and M.J. Koop, J. Power Sources 49 (93) 239.

  6. J.L. Caillerie and L. Albert, J. Power Sources 67 (1997) 279.

    Google Scholar 

  7. R. De Marco and J. Liesegang, Appl. Surf. Sci. 84 (1995) 237.

    Google Scholar 

  8. M. Kosai, S. Yasukawa, S. Osumi and M. Tsubota, J. Power Sources 67 (1997) 43.

    Google Scholar 

  9. N.Y. Tang and E.M.l. Valeriote, J. Electrochem. Soc. 142 (1995) 2144.

    Google Scholar 

  10. L. Albert, A. Chabrol, L. Torcheux, P. Steyer and J.P. Hilger, J. Power Sources 67 (1997) 257.

    Google Scholar 

  11. R. De Marco, A. Rochliadi and J. Jones, J. Appl. Electrochem. 31 (2001).

  12. R. De Marco, J. Appl. Electrochem. 27 (1997) 93.

    Google Scholar 

  13. N.E. Bagshaw, J. Power Sources 67 (1997) 105.

    Google Scholar 

  14. V.E. Dmitrenko, B.Z. Lubnentsov, Y. Ezdokimenko, I.I. Lisyansky and V.A. Soldatenko, J. Power Sources 67 (1997) 111.

    Google Scholar 

  15. L.T. Lam, O. Lim, H. Ozgun and D.A.J. Rand, J. Power Sources 48 (1994) 83.

    Google Scholar 

  16. J.E. Manders, L.T. Lam, R. De Marco, J.D. Douglas, R. Pillig and D.A.J. Rand, J. Power Sources 48 (1994) 113.

    Google Scholar 

  17. K. McGregor, J. Power Sources 59 (1996) 31.

    Google Scholar 

  18. P.T. Moseley, J. Power Sources 64 (1997) 47.

    Google Scholar 

  19. T.C. Dayton and D.B. Edwards, J. Power Sources 85 (2000) 137.

    Google Scholar 

  20. B. Culpin, A.F. Hollenkamp and D.J. Rand, J. Power Sources 38 (1992) 63.

    Google Scholar 

  21. A.L. Ferreira, J. Power Sources 95 (2001) 255.

    Google Scholar 

  22. W.A. Badawy and S.S. El-Egamy, J. Power Sources 55 (1995) 11.

    Google Scholar 

  23. S. Wang, B. Xia, G. Yin and P. Shi, J. Power Sources 55 (1995) 47.

    Google Scholar 

  24. P.W. Appel and D.B. Edwards, J. Power Sources 55 (1995) 81.

    Google Scholar 

  25. R. Floresand L.M. Blanco, J. Power Sources 78 (1999) 30.

    Google Scholar 

  26. M. Perrin, H. Doring, K. Ihmels, A. Weiss, E. Vogel and R. Wagner, J. Power Sources 95 (2001) 85.

    Google Scholar 

  27. M. Calábek, K. Micka, P. Baca, P. Krivak and L. Smarda, J. Power Sources 67 (1997) 85.

    Google Scholar 

  28. M. Calábek, K. Micka, P. Baca, P. Krivak and L. Sacha, J. Power Sources 78 (1999) 94.

    Google Scholar 

  29. M. Calábek, K. Micka, P. Baca and P. Krivak, J. Power Sources 95 (2001) 97.

    Google Scholar 

  30. D.B. Edwards and C. Schmitz, J. Power Sources 85 (2000) 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. De Marco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochliadi, A., De Marco, R. Synergistic effects of novel battery manufacturing processes for lead–acid batteries. Part I: Charge/discharge cycling of batteries. Journal of Applied Electrochemistry 32, 1039–1042 (2002). https://doi.org/10.1023/A:1020941428332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020941428332

Navigation