Skip to main content
Log in

A Novel Approach for Isolation of Volatile Chemicals Released by Individual Leaves of a Plant in situ

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A glass chamber designed specifically for collecting volatile chemicals from individual leaves of a plant in situ is described. The effectiveness of the chamber was demonstrated by collecting volatile chemicals from single leaves of two plant species, potato (Solanum tuberosum) and broad bean (Vicia faba), before and after mechanical damage. The glass chamber, in conjunction with thermal desorption, enables reduction of the entrainment time and thereby allows the monitoring of compounds released by leaf damage in successive 5-min periods. An intact broad bean leaf, in the middle of the day, produces small amounts of the green leaf volatiles (E)-2-hexenal and (Z)-3-hexen-1-ol. However, during the first 5 min after mechanical damage, large amounts of (Z)-3-hexenal, (E)-2-hexenal, and (Z)-3-hexen-1-ol are produced. The decline in production of (Z)-3-hexenal and (E)-2-hexenal is fast, and after 10 min, these compounds reach very low levels. (Z)-3-Hexen-1-ol shows an increase for the first 10 min and then a gradual decline. An intact potato leaf, in the middle of the day, produces very small amounts of the sesquiterpene hydrocarbons β-caryophyllene and germacrene-D. After being damaged, the profile of released volatiles is different from that of broad bean. In potato, damage is associated with release of large amounts of green leaf volatiles and sesquiterpene hydrocarbons. Compounds such as (Z)-3-hexenal, (E)-2-hexenal, and (Z)-3-hexen-1-ol are released in high amounts during the first 5 min after damage, but after 10 min, these drop to very low levels. High release associated with damage is also observed for β-caryophyllene, (E)-β-farnesene, germacrene-D, and β-bisabolene. The highest level is reached 5 min after damage and 15 min later, these compounds drop to low levels. The significance of compounds released after plant damage is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Agelopoulos, N. A., and Keller, M. A. 1994. Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-Brassicaceae (Cruciferae). III. Collection and identification of plant and frass volatiles. J. Chem. Ecol. 20:1955-1967.

    Google Scholar 

  • Agelopoulos, N. A., and Pickett, J. A. 1998. Headspace analysis in chemical ecology: The effects of different sampling methods on the ratios of volatile compounds present in headspace samples. J. Chem. Ecol. 24:1161-1172.

    Google Scholar 

  • Blaakmeer, A., Geervliet, J. B. F., Van Loon, J. J. A., Posthumus, M. A., Van Beek, T. A., and De Groot, Æ. 1994. Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: Consequences for in-flight host location by Cotesia parasitoids. Entomol. Exp. Appl. 73:175-182.

    Google Scholar 

  • Blight, M. M. 1990. Techniques for isolation and characterization of volatile semiochemicals of phytophagous insects, pp. 281-288, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.

    Google Scholar 

  • Bolter, C. J., Dicke, M., Van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its determination. J. Chem. Ecol. 23:1003-1023.

    Google Scholar 

  • Bostock, R. M., and Stermer, B. A. 1989. Perspectives of wound healing in resistance to pathogens. Annu. Rev. Phytopathol. 27:343-371.

    Google Scholar 

  • Cole, R. A. 1980. The use of porous polymers for the collection of plant volatiles. J. Sci. Food Agric. 31:1242-1249.

    Google Scholar 

  • Croft, K. P. C., JÜttner, F., and Slusarenko, A. J. 1993. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 101:13-24.

    Google Scholar 

  • Davies, E. 1987. Plant responses to wounding, pp. 243-264, in D. D. Davies (ed.). The Biochemistry of Plants: A Comprehensive Treatise. Physiology of Metabolism, Vol. 12. Academic Press, London.

    Google Scholar 

  • Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, Æ. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16:381-396.

    Google Scholar 

  • Eigenbrode, S. D., Trumble, J. T., Millar, J. G., and White, K. K. 1994. Topical toxicity of tomato sesquiterpenes to the beet armyworm and the role of these compounds in resistance derived from an accession of Lycopersicon hirsutum f. typicum. J. Agric. Food Chem. 42:807-810.

    Google Scholar 

  • Franzios, G., Mirotsou, M., Hatziapostolou, E., Kral, J., Scouras, Z. G., and Mavragani-Tsipidou, P. 1997. Insecticidal and genotoxic activities of mint essential oils. J. Agric. Food Chem. 45:2690-2694.

    Google Scholar 

  • Galliard, T. 1978. Lipolytik and lipoxygenase enzymes in plants and their action in wounded tissues, pp. 155-201, in G. Kahl (ed.). Biochemistry of Wounded Plant Tissues. Walter de Gruyter, Berlin.

    Google Scholar 

  • Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935-2954.

    Google Scholar 

  • Grob, K., and Biedermann, M. 1996. Vaporising systems for large volume injection or on-line transfer into gas chromatography: Classification, critical remarks and suggestions. J. Chromatogr. A 750:11-23.

    Google Scholar 

  • GutiÉrrez, C., Fereres, A., Reina, M., Cabrera, R., and GonzÁlez-Coloma, A. 1997. Behavioral and sublethal effects of structurally related lower terpenes on Myzus persicae. J. Chem. Ecol. 26:1641-1650.

    Google Scholar 

  • Hamilton-Kemp, T. R., McCracken, C. T., Loughrin, J. H., Andersen, R. A., and Hilderbrand, D. F. 1992. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J. Chem. Ecol. 18:1083-1091.

    Google Scholar 

  • Heath, R. R., and Manukian, A. 1992. Development and evaluation of systems to collect volatile semiochemicals from insects and plants using charcoal-infused medium for air purification. J. Chem. Ecol. 18:1209-1226.

    Google Scholar 

  • Heath, R. R., and Manukian, A. 1994. An automated system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593-608.

    Google Scholar 

  • Hildebrand, D. F., Brown, G. C., Jackson, D. M., and Hamilton-Kemp, T. R. 1993. Effects of some leaf-emitted volatile compounds on aphid population increase. J. Chem. Ecol. 19:1875-1887.

    Google Scholar 

  • Jakobsen, H. B., and Olsen, C. E. 1994. Influence of climatic factors on emission of flowers volatiles in situ. Planta 192:365-371.

    Google Scholar 

  • Kajiwara, T., Harada, T., and Hatanaka, A. 1975. Isolation of Z-3-hexenal in tea leaves, Thea sinensis and synthesis thereof. Agric. Biol. Chem. 39:243-247.

    Google Scholar 

  • Konstantopoulou, I., Vassilopoulou, L., Mavragani-Tsipidou, P., and Scouras, Z. G. 1992. Insecticidal of effects essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experimentia 48:616-619.

    Google Scholar 

  • Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223-1280.

    Google Scholar 

  • Loughrin, J. H., Hamilton-Kemp, T. R., Andersen, R. A., and Hilderbrand, D. F. 1990. Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus x domestica: Headspace components and day/night changes in their relative concentrations. Phytochemistry 29:2473-2477.

    Google Scholar 

  • Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the japanese beetle (Popillia japonica Newman). J. Chem. Ecol. 21:1457-1467.

    Google Scholar 

  • Lyr, H., and Banasiak, L. 1983. Alkenals, volatile defense substances in plants, their properties and activities. Acta Phytopathol. Acad. Sci. Hung. 18:3-12.

    Google Scholar 

  • Mookherjee, B. D., Trenkle, R. W., and Wilson, R. A. 1989. Live vs. dead. Part II. A comparative analysis of the headspace volatiles of some important fragrance and flavor raw materials. J. Essent. Oil Res. 2:85-90.

    Google Scholar 

  • Munari, F., Colombo, P. A., Magni, P., Zilioti, G., and Trestianu, S. 1995. GC instrumentation for on-column injection of large volumes: Automated optimization of conditions. J. Microcolumn Separations 7:403-409.

    Google Scholar 

  • ParÉ, P. W., and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161-1167.

    Google Scholar 

  • Panasiuk, O. 1984. Response of colorado potato beetles, Leptinotarsa decemlineata (Say), to volatile components of tancy, Tanacetum vulgare. J. Chem. Ecol. 10:1325-1333.

    Google Scholar 

  • Regnault-Roger, C., and Hamraoui, A. 1995. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.). J. Stored Prod. Res. 31:291-299.

    Google Scholar 

  • Regnault-Roger, C., Hamraoui, A., Holeman, M., Theron, E., and Pinel, R. 1993. Insecticidal effect of essential oils from Mediterranean plants upon Acanthoscelides obtecus SAY (Coleoptera, Brucidae), a pest of kidney bean (Phaseolus vulgaris L.). J. Chem. Ecol. 19:1233-1244.

    Google Scholar 

  • Shaaya, E., Ravid, U., Paster, N., Juven, B., Zisman, U., and Pissarev, V. 1991. Fumigant toxicity of essential oils against four major stored-product insects. J. Chem. Ecol. 17:499-504.

    Google Scholar 

  • Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kokkini, S., Lanaras, T., and Arsenakis, M. 1996. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem. 44:1202-1205.

    Google Scholar 

  • Sivropoulou, A., Nikolaou, C., Papanikolaou, E., Kokkini, S., Lanaras, T., and Arsenakis, M. 1997. Antimicrobial, cytotoxic and antiviral activities of Salvia fructicosa essential oil. J. Agric. Food Chem., 45:3197-3201.

    Google Scholar 

  • Takabayashi, J., Dicke, M., Takahashi, S., Posthumus, M. A., and Van Beek, T. A. 1994. Leaf age affects composition of herbivore-induced synomones and attraction of predatory mites. J. Chem. Ecol. 20:373-386.

    Google Scholar 

  • Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273-287.

    Google Scholar 

  • Tollsten, L., and BergstrÖm, G. 1988. Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27:4013-4018.

    Google Scholar 

  • Tollsten, L., and MÜller, P. M. 1996. Volatile organic compounds emitted from beech leaves. Phytochemistry 43:759-762.

    Google Scholar 

  • Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemicals used by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141-172.

    Google Scholar 

  • Whitmann, D. W., and Eller, F. J. 1990. Parasitic wasps orient to green leaf volatiles. Chemoecology 1:69-75.

    Google Scholar 

  • Zeringue, H. J., and McCormick, S. P. 1989. Relationships between cotton leaf-derived volatiles and the growth of Aspergillus flavus. J. Am. Oil Chem. Soc. 66:581-585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agelopoulos, N.G., Hooper, A.M., Maniar, S.P. et al. A Novel Approach for Isolation of Volatile Chemicals Released by Individual Leaves of a Plant in situ. J Chem Ecol 25, 1411–1425 (1999). https://doi.org/10.1023/A:1020939112234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020939112234

Navigation