Skip to main content
Log in

Design and synthesis of artificial ribonucleases based on 1,4-diazabicyclo[2.2.2]octane and imidazole

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review surveys the results of our studies devoted to the design of highly efficient catalysts of hydrolysis of the phosphodiester bonds in RNA. These catalysts contain the imidazole residue in the catalytic domain, one or several bis-quaternized rings of 1,4-diazabicyclo[2.2.2]octane as a polycationic RNA-binding domain, and a lipophilic radical. A versatile approach to artificial ribonucleases of this type was proposed, which allows one to vary not only the number of positive charges in the RNA-binding domain, the structure of the catalytic site, and their mutual arrangement but also the domain structure of the molecule as a whole. Analysis of the catalytic properties of the synthesized constructs makes it possible to optimize the domain structure and the geometry of the molecule ensuring its maximum ribonuclease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DNA and RNA Cleavers and Chemotherapy of Cancer and Viral Diseases, NATO ASI Ser., Ser. C, Ed. B. Meunier, 1996, 479, 372 pp.

  2. R. T. Raines, Biomed. Health Res., 1999, 27, 235.

    Google Scholar 

  3. E. L. Hegg and J. N. Burstyn, Coord. Chem. Rev., 1998, 173, 133.

    Google Scholar 

  4. H. Kozlowski, W. Bal, M. Dyba, and T. Kowalik-Jankowska, Coord. Chem. Rev., 1999, 184, 319.

    Google Scholar 

  5. E. Kimura, Curr. Opin. Chem. Biol., 2000, 4, 207.

    Google Scholar 

  6. N. Sträter, W. N. Lipscomb, T. Klabunde, and B. Krebs, Angew. Chem., Int. Ed. Engl., 1996, 35, 2024.

    Google Scholar 

  7. D. E. Wilcox, Chem. Rev., 1996, 96, 2435.

    Google Scholar 

  8. J. A. Covan, Chem. Rev., 1998, 98, 1067.

    Google Scholar 

  9. R. A. Kovall and B. W. Matthews, Curr. Opin. Chem. Biol., 1999, 3, 578.

    Google Scholar 

  10. Y. Iwasaki, S. Horiike, K. Matsushima, and T. Yamane, Eur. J. Biochem., 1999, 264, 577.

    Google Scholar 

  11. E. B. Gottlin, A. E. Rudolph, Y. Zhao, H. R. Matthews, and J. E. Dixon, Proc. Natl. Acad. Sci. USA, 1998, 95, 9202.

    Google Scholar 

  12. M. Zhang, R. L. van Etten, and C. V. Stauffacher, Biochemistry, 1994, 33, 11097.

    Google Scholar 

  13. Comprehensive Organic Chemistry, v. 2, Ed. D. Barton and W. D. Ollis, Pergamon Press, Oxford-New York-Toronto-Sydney-Paris-Frankfurt, 1979.

    Google Scholar 

  14. J. Aqvist, K. Kolmodin, J. Florian, and A. Warshel, Chem. Biol., 1999, 6, 71.

    Google Scholar 

  15. J. A. Gerlt and P. G. Gassman, Biochemistry, 1993, 32, 11943.

    Google Scholar 

  16. C. Lim and P. Tole, J. Am. Chem. Soc., 1992, 114, 7245.

    Google Scholar 

  17. R. J. Hondal, Z. Zhao, A. V. Kravchuk, H. Liao, S. R. Riddle, X. Yue, K. S. Bruzik, and M.-D. Tsai, Biochemistry, 1998, 37, 4568.

    Google Scholar 

  18. G. Pratviel, J. Bernadou, and B. Meunier, Adv. Inorg. Chem., 1998, 45, 251.

    Google Scholar 

  19. H. H. Thorp, Chem. Biol., 2000, 7, 33.

    Google Scholar 

  20. R. Breslow, in Templated Org. Synth., Eds. F. Diederich and P. J. Stang, Wiley-VCH Verlag GmbH, Weinheim, 2000, 159.

    Google Scholar 

  21. US Pat. 5861477; Chem. Abstrs., 1999, 130, 110645.

    Google Scholar 

  22. M. Kalesse and T. Oost, in Bioorg. Chem., Ed. U. Diederichsen, Wiley-VCH Verlag GmbH, Weinheim, 1999, 272.

    Google Scholar 

  23. R. Breslow and S. D. Dong, Chem. Rev., 1998, 98, 1997.

    Google Scholar 

  24. R. Haner and J. Hall, Antisense Nucleic Acid Drug Dev., 1997, 7, 423.

    Google Scholar 

  25. M. A. Reynolds, T. A. Beck, P. B. Say, D. A. Schwartz, B. P. Dwyer, W. J. Daily, M. M. Vaghefi, M. D. Metzler, R. E. Klem, and L. J. Arnold, Nucleic Acids Res., 1996, 24, 760.

    Google Scholar 

  26. R. Haener, J. Hall, A. Pfuetzer, and D. Huesken, Pure Appl. Chem., 1998, 70, 111.

    Google Scholar 

  27. M. Komiyama, N. Takeda, M. Irisawa, and M. Yashiro, NATO ASI Ser., Ser. C, 1996, 479, 321.

    Google Scholar 

  28. J. Kamitani, R. Kawahara, M. Yashiro, and M. Komiyama, Chem. Lett., 1998, 1047.

  29. M. Komiyama, J. Biochem., 1995, 118, 665.

    Google Scholar 

  30. B. N. Trawick, A. T. Daniher, and J. K. Bashkin, Chem. Rev., 1998, 98, 939.

    Google Scholar 

  31. V. V. Vlassov, V. N. Sil´nikov, and M. A. Zenkova, Mol. Biol., 1998, 32, 62 [Russ. J. Mol. Biol., 1998, 32, 50 (Engl. Transl.)].

    Google Scholar 

  32. M. Komiyama and J. Sumaoka, Curr. Opin. Chem. Biol., 1998, 2, 751.

    Google Scholar 

  33. V. N. Sil´nikov and V. V. Vlassov, Usp. Khim., 2001, 70, 562 [Russ. Chem. Rev., 2001, 70, 491 (Engl. Transl.)].

    Google Scholar 

  34. J. Costamagna, G. Feraudi, B. Matsuhiro, M. Campos-Vallette, J. Canales, M. Villagran, J. Vargas, and M. J. Aguirre, Coord. Chem. Rev., 2000, 196, 125.

    Google Scholar 

  35. V. V. Vlassov, G. Zuber, B. Felden, J.-P. Behr, and R. Giege, Nucl. Acids Res., 1995, 23, 3161.

    Google Scholar 

  36. M. Endo, K. Hirata, T. Ihara, S. Sueda, M. Takagi, and M. Komiyama, J. Am. Chem. Soc., 1996, 118, 5478.

    Google Scholar 

  37. T. Kato, T. Takeuchi, and I. Karube, Chem. Commun., 1996, 953.

  38. T. Oost, A. Filipazzi, and M. Kalesse, Liebigs Ann. Recl., 1997, 1005.

  39. K. Shinozuka, K. Shimizu, Y. Nakashima, and H. Sawai, Bioorg. Med. Chem. Lett., 1994, 4, 1979.

    Google Scholar 

  40. M. Komiyama and K. Yoshinari, J. Org. Chem., 1997, 62, 2155.

    Google Scholar 

  41. A. Bibillo, M. Figlerowicz, and R. Kierzek, Nucleic Acids Res., 1999, 27, 3931.

    Google Scholar 

  42. X. H. Li, R. Wan, Q. Zhang, and Y. F. Zhao, Chin. Chem. Lett., 1998, 9, 333.

    Google Scholar 

  43. N. S. Zhdan, I. L. Kuznetsova, A. V. Vlassov, V. N. Sil´nikov, M. A. Zenkova, and V. V. Vlassov, Bioorg. Khim., 1999, 25, 723 [Russ. J. Bioorg. Chem., 1999, 25, 639 (Engl. Transl.)].

    Google Scholar 

  44. K. Kurz and M. W. Goebel, Helv. Chim. Acta, 1996, 79, 1967.

    Google Scholar 

  45. B. Barbier and A. Brack, J. Am. Chem. Soc., 1988, 110, 6880.

    Google Scholar 

  46. A. Lorente, J. F. Espinosa, M. Fernandez-Saiz, J.-M. Lehn, W. D. Wilson, and Y. Y. Zhong, Tetrahedron Lett., 1996, 37, 4417.

    Google Scholar 

  47. V. N. Sil´nikov, N. P. Luk´yanchuk, G. V. Shishkin, R. Giege, and V. V. Vlassov, Dokl. Akad. Nauk, 1999, 364, 690 [Dokl. Biochem., 1999, 364, 20 (Engl. Transl.)].

    Google Scholar 

  48. K. Shinozuka, Y. Nakashima, K. Shimizu, and H. Sawai, Nucleosides, Nucleotides Nucleic Acids, 2001, 20, 117.

    Google Scholar 

  49. N. S. Zhdan, I. L. Kuznetsova, M. A. Zenkova, A. V. Vlassov, V. N. Silnikov, R. Giege, and V. V. Vlassov, Nucleosides Nucleotides, 1999, 18, 1491.

    Google Scholar 

  50. V. Silnikov, G. Zuber, J.-P. Behr, R. Giege, and V. Vlassov, Phosphorus, Sulfur Silicon Relat. Elem., 1996, 109-110, 277-280.

    Google Scholar 

  51. T. Oost and M. Kalesse, Tetrahedron, 1997, 53, 8421.

    Google Scholar 

  52. J.-M. Yan, R.-G. Xie, H.-M. Zhao, D.-X. Wu, and P.-F. Xia, Chin. J. Chem., 1997, 15, 438.

    Google Scholar 

  53. R. Breslow and C. Schmuck, J. Am. Chem. Soc., 1996, 118, 6601.

    Google Scholar 

  54. O. Lorthioir, J. C. Truffert, D. Sy, B. Barbier, and D. Lelievre, A. Brack, Protein Pept. Lett., 1996, 3, 153.

    Google Scholar 

  55. V. Vlassov, T. Abramova, T. Godovikova, R. Giege, and V. Silnikov, Antisense Nucleic Acid Drug Dev., 1997, 7, 39.

    Google Scholar 

  56. D. V. Pyshnyi, M. N. Repkova, S. G. Lokhov, E. M. Ivanova, A. G. Venyaminova, and V. F. Zarytova, Bioorg. Khim., 1997, 23, 497 [Russ. J. Bioorg. Chem., 1997, 23, 461 (Engl. Transl.)]

    Google Scholar 

  57. D. Pyshnyi, M. Repkova, S. Lokhov, E. Ivanova, A. Venyaminova, and V. Zarytova, Nucleosides Nucleotides, 1997, 16, 1571.

    Google Scholar 

  58. K. Ushijima, H. Gouzu, K. Hosono, M. Shirakawa, K. Kagosima, K. Takai, and H. Takaku, Biochim. Biophys. Acta, 1998, 1379, 217.

    Google Scholar 

  59. N. G. Beloglazova, V. N. Sil´nikov, M. A. Zenkova, and V. V. Vlassov, FEBS Lett., 2000, 481, 277.

    Google Scholar 

  60. US Pat. 5854410; Chem. Abstrs., 1996, 124, 78684.

    Google Scholar 

  61. K. Shinozuka, A. Umeda, H. Ozaki, and H. Sawai, Nucleic Acids Symp. Ser., Oxford University Press, 1996, 35, 121.

    Google Scholar 

  62. M. Endo, Y. Azuma, and M. Komiyama, Nucleic Acids Symp. Ser., Oxford University Press, 1996, 35, 81.

    Google Scholar 

  63. A. Kuzuya, Y. Azuma, T. Inokawa, K. Yoshinari, and M. Komiyama, Nucleic Acids Symp. Ser., Oxford University Press, 1997, 37, 209.

    Google Scholar 

  64. M. Endo, Y. Azuma, Y. Saga, A. Kuzuya, G. Kawai, and M. Komiyama, J. Org. Chem., 1997, 62, 846.

    Google Scholar 

  65. Jpn Pat. 10191970; Chem. Abstrs., 1998, 129, 199805.

    Google Scholar 

  66. K. Shinozuka, T. Aoki, and H. Sawai, Nucleic Acids Symp. Ser., Oxford University Press, 1998, 39, 229.

    Google Scholar 

  67. A. Ishikubo, M. Yashiro, and M. Komiyama, Nucleic Acids Symp. Ser., Oxford University Press, 1995, 34, 85.

    Google Scholar 

  68. P. Molenveld, J. F. J. Engbersen, and D. N. Reinhoudt, Eur. J. Org. Chem., 1999, 3269.

  69. S. Liu and A. D. Hamilton, Tetrahedron Lett., 1997, 38, 1107.

    Google Scholar 

  70. E. Koevari and R. Kraemer, J. Am. Chem. Soc., 1996, 118, 12704.

    Google Scholar 

  71. N. Beloglazova, A. Vlassov, D. Konevetc, V. Sil´nikov, M. Zenkova, R. Giege, and V. Vlassov, Nucleosides Nucleotides, 1999, 18, 1463.

    Google Scholar 

  72. D. A. Konevetz, M. A. Zenkova, V. N. Sil´nikov, and V. V. Vlassov, Dokl. Akad. Nauk SSSR, 1998, 360, 554 [Dokl. Biochem., 1998, 360, 72 (Engl. Transl.)].

    Google Scholar 

  73. D. A. Konevetz, I. E. Beck, N. G. Beloglazova, I. V. Sulimenkov, V. N. Sil´nikov, M. A. Zenkova, G. V. Shishkin, and V. V. Vlassov, Tetrahedron, 1999, 55, 503.

    Google Scholar 

  74. M. A. Zenkova, A. V. Vlassov, D. A. Konevetz, V. N. Sil´nikov, R. Giege, and V. V. Vlassov, Bioorg. Khim., 2000, 26, 679 [Russ. J. Bioorg. Chem., 2000, 26, 610 (Engl. Transl.)]

    Google Scholar 

  75. D. A. Konevetz, I. E. Bekk, V. N. Sil´nikov, M. A. Zenkova, and G. V. Shishkin, Bioorg. Khim., 2000, 26, 852 [Russ. J. Bioorg. Chem., 2000, 26, 765 (Engl. Transl.)]

    Google Scholar 

  76. M. Zenkova, N. Beloglazova, V. Sil´nikov, V. Vlassov, and R. Giege, Methods Enzymol., 2001, 341, 468.

    Google Scholar 

  77. D. A. Konevetz, N. L. Mironova, I. E. Bekk, M. A. Zenkova, V. V. Vlassov, G. V. Shishkin, and V. N. Sil´nikov, Bioorg. Khim., 2002, No. 4 [Russ. J. Bioorg. Chem., 2002, 27, No. 4 (Engl. Transl.)]

  78. I. Tabushi, Y. Kobuke, and J. Imuta, Nucl Acids Symp Ser., Oxford University Press, 1979, 6, 175.

    Google Scholar 

  79. A. Riepe, H. Beier, and H. J. Gross, FEBS Lett., 1999, 457, 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konevetz, D.A., Beck, I.E., Shishkin, G.V. et al. Design and synthesis of artificial ribonucleases based on 1,4-diazabicyclo[2.2.2]octane and imidazole. Russian Chemical Bulletin 51, 1100–1111 (2002). https://doi.org/10.1023/A:1020937505019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020937505019

Navigation