Skip to main content
Log in

A Construction of Berezin–Toeplitz Operators via Schrödinger Operators and the Probabilistic Representation of Berezin–Toeplitz Semigroups Based on Planar Brownian Motion

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

First we discuss the construction of self-adjoint Berezin–Toeplitz operators on weighted Bergman spaces via semibounded quadratic forms. To ensure semiboundedness, regularity conditions on the real-valued functions serving as symbols of these Berezin–Toeplitz operators are imposed. Then a probabilistic expression of the sesqui-analytic integral kernel for the associated semigroups is derived. All results are the consequence of a relation of Berezin–Toeplitz operators to Schrödinger operators defined via certain quadratic forms. The probabilistic expression is derived in conjunction with the Feynman–Kac–Itô formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicki, R. and Klauder, J. R.: Quantization of systems with a general phase space equipped with a Riemannian metric, J. Phys. A 29 (1996) 2475–2483.

    Google Scholar 

  2. Alicki, R., Klauder, J. R. and Lewandowski, J.: Landau-level ground state and its relevance for a general quantization procedure, Phys. Rev. A 48 (1993), 2538–2548.

    Google Scholar 

  3. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math. 14 (1961), 187–214.

    Google Scholar 

  4. Barut, A. O. and Girardello, L.: New 'coherent' states associated with non-compact groups, Comm. Math. Phys. 21 (1971), 41–55.

    Google Scholar 

  5. Bar-Moshe, D. and Marinov, M. S.: Berezin quantization and unitary representation of Lie groups, In: R. L. Dobrushin, R. L. Minlos, M. A. Shubin and A. M. Vershik (eds), Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. 177, Amer. Math. Soc., Providence, 1996, pp. 1–21.

    Google Scholar 

  6. Berezin, F. A.: Quantization, Math. USSR-Izvest. 8 (1974), 1109–1165. Russ. orig.: Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175.

    Google Scholar 

  7. Bergman, S.: The Kernel Function and Conformal Mapping, 2nd edn, Amer. Math. Soc. Survey 5, Amer. Math. Soc., Providence, 1970.

    Google Scholar 

  8. Bodmann, B., Leschke, H. and Warzel, S.: A rigorous path-integral formula for quantum spin via planar Brownian motion, In: R. Casalbuoni, R. Giachetti, V. Tognetti, R. Vaia and P. Verrucchi (eds), Path Integrals from peV to TeV, World Scientific, Singapore, 1999, pp. 173–176.

    Google Scholar 

  9. Bodmann, B., Leschke, H. and Warzel, S.: A rigorous path integral for quantum spin using flat-space Wiener regularization, J. Math. Phys. 40 (1999), 2549–2559.

    Google Scholar 

  10. Bordemann, M., Meinrenken, E. and Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and gl(n), n→∞limits, Comm. Math. Phys. 165 (1994), 281–296.

    Google Scholar 

  11. Broderix, K., Hundertmark, D. and Leschke, H.: Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys. 12 (2000), 181–225.

    Google Scholar 

  12. Cichoń, D.: Notes on unbounded Toeplitz operators in Segal-Bargmann spaces, Ann. Polon. Math. 64 (1996), 227–235.

    Google Scholar 

  13. Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B.: Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer, Berlin, 1987.

    Google Scholar 

  14. Daubechies, I. and Klauder, J. R.: Quantum-mechanical path integrals withWiener measure for all polynomial Hamiltonians II, J. Math. Phys. 26 (1985), 2239–2256.

    Google Scholar 

  15. Daubechies, I. and Klauder, J. R.: True measures for real time path integrals, In: M. L. Gutzwiller, A. Inomata, J. R. Klauder and L. Streit (eds), Path Integrals from meV to MeV, Bielefeld Encounters in Phys. Math., World Scientific, Singapore, 1986, pp. 425–432.

    Google Scholar 

  16. Daubechies, I., Klauder, J. R. and Paul, T.: Wiener measures for path integrals with affine kinematic variables, J. Math. Phys. 28 (1987), 85–102.

    Google Scholar 

  17. Engliš, M.: Asymptotics of the Berezin transform and quantization on planar domains, Duke Math. J. 79 (1995), 57–76.

    Google Scholar 

  18. Fujii, K. and Funahashi, K.: Extension of the Barut-Girardello coherent state and path integral, J. Math. Phys. 38 (1997), 4422–4434.

    Google Scholar 

  19. Gradshteyn, I. S. and Ryzhik, I. M.: Tables of Integrals, Series, and Products, 5th edn, Academic Press, Boston, 1995.

    Google Scholar 

  20. Hinz, A. M.: Regularity of solutions for singular Schrödinger equations, Rev. Math. Phys. 4 (1992), 95–161.

    Google Scholar 

  21. Hinz, A. M. and Stolz, G.: Polynomial boundedness of eigensolutions and the spectrum of Schrödinger operators, Math. Ann. 294 (1992), 195–211.

    Google Scholar 

  22. Inomata, A., Kuratsuji, H. and Gerry, C. C.: Path Integrals and Coherent States of SU(2)and SU(1, 1), World Scientific, Singapore, 1992.

    Google Scholar 

  23. Janas, J. and Stochel, J.: Unbounded Toeplitz operators in the Segal-Bargmann space, II, J. Funct. Anal. 126 (1994), 419–447.

    Google Scholar 

  24. Kato, T.: Schrödinger operators with singular potentials, Israel J. Math. 13 (1973), 135–148.

    Google Scholar 

  25. Klauder, J. R.: Quantization is geometry, after all, Ann. Phys. 188 (1988), 120–141.

    Google Scholar 

  26. Klauder, J. R.: Quantization on non-homogeneous manifolds, Internat. J. Theor. Phys. 33 (1994), 509–522.

    Google Scholar 

  27. Klauder, J. R. and Onofri, E.: Landau levels and geometric quantization, Internat. J. Modern. Phys. 4 (1989), 3939–3949.

    Google Scholar 

  28. Leinfelder, H. and Simader, C. G.: Schrödinger operators with singular magnetic vector potentials, Math. Z. 176 (1981), 1–19.

    Google Scholar 

  29. Maraner, P.: Landau ground state on Riemannian surfaces, Modern. Phys. Lett. A 7 (1992), 2555–2558.

    Google Scholar 

  30. Meschkowski, H.: Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962.

    Google Scholar 

  31. Neeb, K. H.: Coherent states, holomorphic extensions, and highest weight representations, Pacific J. Math. 174 (1996), 497–541.

    Google Scholar 

  32. Perelomov, A.: Generalized Coherent States and their Application, Springer, Berlin, 1986.

    Google Scholar 

  33. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, vol. II, Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

    Google Scholar 

  34. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, vol. I, Functional Analysis, Academic Press, New York, 1980.

    Google Scholar 

  35. Rogers, L. C. G. and Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 2: Itô calculus, Wiley, Chichester, 1987.

    Google Scholar 

  36. Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn, Springer, Berlin, 1999.

    Google Scholar 

  37. Simon, B.: A canonical decomposition for quadratic forms with applications to monotone convergence, J. Funct. Anal. 28 (1978), 377–385.

    Google Scholar 

  38. Simon, B.: Functional Integration and Quantum Physics, Academic Press, New York, 1979.

    Google Scholar 

  39. Simon, B.: Maximal and minimal Schrödinger forms, J. Oper. Theory 1 (1979), 37–47.

    Google Scholar 

  40. Simon, B.: Schrödinger semigroups, Bull. Amer. Math. Soc. (NS) 7 (1982), 447–526; Erratum: ibid. 11 (1984), 426.

    Google Scholar 

  41. Weidmann, J.: Linear Operators in Hilbert Spaces, Springer, New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodmann, B.G. A Construction of Berezin–Toeplitz Operators via Schrödinger Operators and the Probabilistic Representation of Berezin–Toeplitz Semigroups Based on Planar Brownian Motion. Mathematical Physics, Analysis and Geometry 5, 287–306 (2002). https://doi.org/10.1023/A:1020929223949

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020929223949

Navigation