Skip to main content
Log in

Alteration of Phosphoinositide Degradation by Cytosolic and Membrane-Bound Phospholipases after Forebrain Ischemia - Reperfussion in Gerbil: Effects of Amyloid Beta Peptide

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The reperfusion of previously ischemic brain is associated with exacerbation of cellular injury. Reperfusion occasionally potentates release of intracellular enzymes, influx of Ca2+, breakdown of membrane phospholipids, accumulation of amyloid precursor protein or amyloid β-(like) proteins, and apolipoprotein E. In this study, the effect of reperfusion injury on the activity of cerebral cortex enzymes acting on phosphatidyl [3H] inositol (PI) and [l4C-arachidonoyl] PI was investigated. Moreover the effect of amyloid β25–35 on PI degradation by phospholipase(s) of normoxic brain and subjected to ichemia-reperfussion injury was determined. Brain ischemia in gerbils (Meriones unguiculatus) was induced by ligation of both common carotid arteries for 5 min and then brains were perfused for 15 min, 2 h and 7 days. Statistically significant activation of enzyme(s) involved in phosphatidylinositol degradation in gerbils subjected to ischemia-reperfusion injury was observed. Nearly all gerbils showed a higher activity of cytosolic PI phos-pholipase C (PLC) at 15 min after ischemia. Concomitantly, the significant enhancement of the level of DAG and AA radioactivity at this short reperfusion time confirmed the active PI degradation by phospholipase(s) in cerebral cortex and hippocampus. After a prolonged reperfusion time of 7 days after ischemia, both cytosolic and membrane-bound forms of PI-PLC were activated. The question arises if alteration of membranes by the degradation of phospholipids occurring after an ischemic episode potentates the effect of Aβ on membrane-bound enzymes. A neuro-toxic fragment of amyloid, Aβ 25–35, incubated in the presence of endogenous Ca2+, increased significantly the PI-PLC activity of normoxic brain. In its non-aggregated form, Aβ 25–35 activates PI-PLC but in the aggregated form the enzymatic activity decreased. Thus, Aβ 25–35 exerts a similar effect on the membrane-bound PI-PLC from normoxic brain or subjected to ischemia reperfussion injury. We conclude that the degradation of phosphatidylinositol by cytosolic phosphoinositide-phospholipase C may contribute to the pathophysiology of delayed neuronal death following cerebral ischemia. Thus, a specific inhibitor of this enzyme(s) may offer therapeutic strategies to protect the brain from damage triggered by ischemia. Ischemia-reperfusion injury had no effect on Aβ-evoked alterations of synaptic plasma membrane-bound PI-PLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abe, K., Kogure, K., Yamamoto, H., Imazawa, M., and Miyamoto, K. 1987. Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J. Neurochem., 48:503–509.

    Google Scholar 

  2. Bazan, N. G. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218:1–10.

    Google Scholar 

  3. Bentham, J. M., Higgins, A. J., and Woodward, B. 1987. The effects of ischemia, lysophosphatidylcholine and palmitoylcarnitine on rat heart phospholipase A2 activity. Basic. Res. Cardiol., 82Suppl. 1:127–35:127–135.

    Google Scholar 

  4. Berridge, M. J. 1987. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem., 56:159–193.

    Google Scholar 

  5. Berridge, M. J., Dawson, R. M., Downes, C. P., Heslop, J. P., and Irvine, R. F. 1983. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem., J. 212:473–482.

    Google Scholar 

  6. Berridge, M. J., and Irvine, R. F. 1989. Inositol phosphates and cell signalling. Nature, 341:197–205.

    Google Scholar 

  7. Bligh, E. G., and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37:911–917.

    Google Scholar 

  8. Bond, J. M., Harper, I. S., Chacon, E., Reece, J. M., Herman, B., and Lemasters, J. J. 1994. The pH paradox in the pathophysiology of reperfusion injury to rat neonatal cardiac myocytes. Ann. NY Acad. Sci., 723:25–37.

    Google Scholar 

  9. Bonventre, J. V., and Koroshetz, W. J. 1993. Phospholipase A2 (PLA2) activity in gerbil brain: characterization of cytosolic and membrane-associated forms and effects of ischemia and reperfusion on enzymatic activity. J. Lipid Mediat., 6:457–471.

    Google Scholar 

  10. Bonventre, J. V., Huang, Z. H., Taheri, M. R., O'Leary, E., Li, E., Moskowitz, M. A., and Sapirstein, A. 1997. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature, 390:622–625.

    Google Scholar 

  11. Chalimoniuk, M., and Strosznajder, J. B. 1998. NMDA receptor—dependent nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in gerbils: Effect of 7-Nitroindazole. J. Neurosci. Res., 54:681–690.

    Google Scholar 

  12. Chandler, L. J., and Crews, F. T. 1990. Calcium-versus G protein-mediated phosphoinositide. Hydrolysis in rat cerebral cortical synaptoneurosomes. J. Neurochem., 55:1022–1030.

    Google Scholar 

  13. Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1:628–634.

    Google Scholar 

  14. Clark, J. D., Lin, L.-L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y., Milona, N., and Knopf, J. L. 1991. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell, 65:1043–1051.

    Google Scholar 

  15. Clemens, J. A., Stephenson, D. T., Smalstig, E. B., Roberts, E. F., Johnstone, E. M., Sharp, J. D., Little, S. P., and Kramer, R. M. 1996. Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke, 27:527–535.

    Google Scholar 

  16. Crawford, F., Suo, Z., Fang, C., and Mullan, M. 1998. Characteristics of the in vitro vasoactivity of beta-amyloid peptides. Exp. Neurol., 150:159–168.

    Google Scholar 

  17. Das, D. K. 1994. Cellular, biochemical, and molecular aspects of reperfusion injury. Introduction. Ann. NY Acad. Sci., 723:xiii-xxvi.

    Google Scholar 

  18. Dennis, E. A. 1994. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem., 269:13057–13061.

    Google Scholar 

  19. Domanska-Janik, K., Lazarewicz, J., Noremberg, K., Strosznajder, J., and Zalewska, T. 1985. Metabolic disturbances of synaptosomes isolated from ischemic gerbil brain. Neurochem. Res., 10:649–665.

    Google Scholar 

  20. Edgar, A. D., Strosznajder, J., and Horrocks, L. A. 1982. Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem., 39:1111–1116.

    Google Scholar 

  21. Fisher, S. K., Heacock, A. M., and Agranoff, B. W. 1992. Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem., 58:18–38.

    Google Scholar 

  22. Gilboe, D. D., Kintner, D., Fitzpatrick, J. H., Emoto, S. E., Esanu, A., Braquet, P. G., and Bazan, N. G. 1991. Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J. Neurochem., 56:311–319.

    Google Scholar 

  23. Gores, G. J., Nieminen, A. L., Wray, B. E., Herman, B., and Lemasters, J. J. 1989. Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J. Clin. Invest., 83:386–396.

    Google Scholar 

  24. Grynberg, A., Nalbone, G., Degois, M., Leonardi, J., Athias, P., and Lafont, H. 1988. Activities of some enzymes of phospholipid metabolism in cultured rat ventricular myocytes in normoxic and hypoxic conditions. Biochim. Biophys. Acta, 958:24–30.

    Google Scholar 

  25. Hayakawa, M., Ishida, N., Takeuchi, K., Shibamoto, S., Hori, T., Oku, N., Ito, F., and Tsujimoto, M. 1993. Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J. Biochem., 268:11290–11295.

    Google Scholar 

  26. Ishimaru, H., Ishikawa, K., Haga, S., Shoji, M., Ohe, Y., Haga, C., Sasaki, A., Takashashi, A., and Maruyama, Y. 1996. Accumulation of apolipoprotein E and βamyloid-like protein in a trace of the hippocampal CA1 pyramidal cell layer after ischaemic delayed neuronal death. NeuroReport, 7:3063–3067.

    Google Scholar 

  27. Jendroska, K., Poewe, W., Daniel, S. E., Pluess, J., Iwerssen-Schmidt, H., Paulsen, J., Barthel, S., Schelosky, L., Cervos-Navarro, J., and DeArmond, S. J. 1995 Ischemic stress induces deposition of amyloid beta immunoreactivity in human brain. Acta Neuropathol. (Berl.) 90:461–466.

    Google Scholar 

  28. Kalaria R. N., Bhatti S. U., Palatinsky E. A., Pennington D. H., Shelton E. R., Chan H. W., Perry G., and Lust W. D. (1993) Accumulation of the β amyloid precursor protein at sites of ischemic injury in rat brain. NeuroReport, 4:211–214.

    Google Scholar 

  29. Klunk, W. E., Xu, C. J., McClure, R. J., Panchalingam, K., Stanley, J. A., and Pettegrew, J. W. 1997. Aggregation of β-amyloid peptide is promoted by membrane phospholipid metabolites elevated in Alzheimer's disease brain. J. Neurochem., 69:266–272.

    Google Scholar 

  30. Koistinaho, J., Pyykonen, I., Keinanen, R., and Hokfelt, T. 1996. Expression of beta-amyloid precursor protein mRNAs following transient focal ischaemia. NeuroReport, 7:2727–2731.

    Google Scholar 

  31. Komori, N., Kittel, A., Kang, D., Shackelford, D., Masliah, E., Zivin, J. A., and Saitoh, T. 1997. Reversible ischemia increases levels of Alzheimer amyloid protein precursor without increasing levels of mRNA in the rabbit spinal cord. Brain Res. Mol. Brain Res., 49:103–112.

    Google Scholar 

  32. Lazarewicz, J. W., Strosznajder, J., and Gromek, A. 1972. Effects of ischemia and exogenous fatty acids on the energy metabolism in brain mitochondria. Bull. Acad. Pol. Sci. [Biol.], 20:599–606.

    Google Scholar 

  33. Majewska, M. D., Strosznajder, J., and Lazarewicz, J. 1978. Effect of ischemic anoxia and barbiturate anesthesia on free radical oxidation of mitochondrial phospholipids. Brain Res., 158:423–434.

    Google Scholar 

  34. Mattson, M. P., Rydel, R. E., Lieberburg, I., and Smith-Swintosky, V. L. 1993. Altered calcium signaling and neuronal injury: stroke and Alzheimer's disease as examples. Ann. NY Acad. Sci., 679:1–21.

    Google Scholar 

  35. Moraru, I. I., Popescu, L. M., Liu, X., Engelman, R. M., and Das, D. K. 1994. Role of phospholipase A2, C, and D activities during myocardial ischemia and reperfusion. Ann. NY Acad. Sci., 723:328–332.

    Google Scholar 

  36. Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 334:661–665.

    Google Scholar 

  37. Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J., 9:484–496.

    Google Scholar 

  38. Owada, Y., Tominaga, T., Yoshimoto, T., and Kondo, H. 1994. Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Mol. Brain Res., 25:364–368.

    Google Scholar 

  39. Phillis, J. W., and O'Regan, M. H. 1996. Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res., 730:150–164.

    Google Scholar 

  40. Pluta, R., Misicka, A., Januszewski, S., Barcikowska, M., and Lipkowski, A. W. 1997. Transport of human beta-amyloid peptide through the rat blood-brain barrier after global cerebral ischemia. Acta Neurochir. Suppl. (Wien), 70:247–249.

    Google Scholar 

  41. Rana, R. S., and Hokin, L. E. 1990. Role of phosphoinositides in transmembrane signaling. Physiol. Rev., 70:115–164.

    Google Scholar 

  42. Rhee, S. G., Suh, P. G., Ryu, S. H., and Lee, S. Y. 1989. Studies of inositol phospholipid-specific phospholipase C. Science, 244:546–550.

    Google Scholar 

  43. Rordorf, G., Uemura, Y., and Bonventre, J. V. 1991. Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci., 11:1829–1836.

    Google Scholar 

  44. Samochocki, M., Chalimoniuk, M., and Strosznajder, J. 1996. Nitric oxide responsible for NMDA receptor-evoked inhibition of arachidonic acid incorporation into lipids of brain membrane. Mol. Chem. Neuropathol., 29:79–92.

    Google Scholar 

  45. Smith-Swintosky, V. L., Pettigrew, L. C., Craddock, S. D., Culwell, A. R., Rydel, R. E., and Mattson, M. P. 1994. Secreted forms of β-amyloid precursor protein protect against ischemic brain injury. J. Neurochem., 63:781–784.

    Google Scholar 

  46. Strosznajder, J. 1989. Prolonged ischemia differently affects phospholipase C acting against phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate in brain subsynaptosomal fraction. FEBS Lett., 257:110–112.

    Google Scholar 

  47. Strosznajder, J., Chalimoniuk, M., Samochocki, M., and Gadamski, R. 1994. Nitric oxide: A potent mediator of glutamatergic neurotoxicity in brain ischemia. Ann. NY Acad. Sci., 723:429–432.

    Google Scholar 

  48. Strosznajder, J., Chalimoniuk, M., Strosznajder, R. P., Walski, M., Lupo, G., Anfuso, C. D., Albanese, V., and Alberghina, M. 1998. Arachidonate transport through the blood-retina and bloodbrain barrier of the rat after reperfusion of varying duration following complete cerebral ischemia. Int. J. Devl. Neuroscience, 15:103–113.

    Google Scholar 

  49. Strosznajder, J., Wikiel, H., and Sun, G. Y. 1987. Effects of cerebral ischemia on [3H]inositol lipids and [3H]inositol phosphates of gerbil brain and subcellular fractions. J. Neurochem., 48:943–948.

    Google Scholar 

  50. Strosznajder, J. B., Zambrzycka, A., Kacprzak, M. D., and Strosznajder, R. P. 1998. Amyloid beta peptide 25–35 modulates hydrolysis of phosphoinositides by membrane phospholipase(s) C of adult brain cortex. Mol. Chem. Neuropathol., 35:77–75.

    Google Scholar 

  51. Tomimoto, H., Wakita, H., Akiguchi, I., Nakamura, S., and Kimura, J. 1994. Temporal profiles of accumulation of amyloid beta/A4 protein precursor in the gerbil after graded ischemic stress. J Cereb. Blood Flow Metab., 14:565–573.

    Google Scholar 

  52. Umemura, A., Mabe, H., and Nagai, H. 1992. A phospholipase C inhibitor ameliorates postischemic neuronal damage in rats. Stroke, 23:1163–1166.

    Google Scholar 

  53. Van der Vusse, G. J., Van Bilsen, M., and Reneman, R. S. 1994. Ischemia and reperfusion induced alterations in membrane phospholipids: An overview. Ann. NY Acad. Sci., 723:1–14.

    Google Scholar 

  54. Wakita, H., Tomimoto, H., Akiguchi, I., Ohnishi, K., Nakamura, S., and Kimura, J. 1992. Regional accumulation of amyloid β/A4 protein precursor in the gerbil brain following transient cerebral ischemia. Neurosci. Lett., 146:135–138.

    Google Scholar 

  55. Wikiel, H., and Strosznajder, J. 1987. Phosphatidylinositol degradation in ischemic brain specifically activated by synaptosomal enzymes. FEBS Lett., 216:57–61.

    Google Scholar 

  56. Yoshihara, Y., and Watanabe, Y. 1990. Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem. Biophys. Res. Commun., 170:484–490.

    Google Scholar 

  57. Zambrzycka, A., Strosznajder, R. P., and Strosznajder, J. B. 1999. Amyloid beta peptide 1–40 in aggregated form alters phosphoinositides signalling and free radicals-dependent processes in brain cortex. J. Neurochem.: in press and abstract for the Join Meeting of the Intl. Society of Neurochem and the European Society of Neurochem., Berlin.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strosznajder, J., Zambrzycka, A., Kacprzak, M.D. et al. Alteration of Phosphoinositide Degradation by Cytosolic and Membrane-Bound Phospholipases after Forebrain Ischemia - Reperfussion in Gerbil: Effects of Amyloid Beta Peptide. Neurochem Res 24, 1277–1284 (1999). https://doi.org/10.1023/A:1020929208038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020929208038

Navigation