Skip to main content
Log in

Effects of Neonatal Cerebral Hypoxia-Ischemia on the In Vitro Phosphorylation of Synapsin 1 in Rat Synaptosomes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synapsins are phosphoproteins related to the anchorage of synaptic vesicles to the actin skeleton. Hypoxia-ischemia causes an increased calcium influx into neurons through ionic channels gated by activation of glutamate receptors. In this work seven-day-old Wistar rats were submitted to hypoxia-ischemia and sacrificed after 21 hours, 7, 30, or 90 days. Synaptosomal fractions were obtained by Percoll gradients and incubated with 32P (10μCi/g). Proteins were analysed by SDS-PAGE and radioactivity incorporated into synapsin 1 was counted by liquid scintillation. Twenty-one hours after hypoxia-ischemia we observed a reduction on the in vitro phosphorylation of synapsin 1, mainly due to hypoxia, rather than to ischemia; this effect was reversed at day 7 after the insult. There was another decrease in phosphorylation 30 days after the event interpreted as a late effect of hypoxia-ischemia. No changes were observed at day 90. Our results suggest that decreased phosphorylation of synapsin 1 could be related to neuronal death that follows hypoxia-ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Katz, E. 1989. The release of neural transmitter substances. Curr. Opin. Cell Biol., 1:655.

    Google Scholar 

  2. DeCamilli, P., Harris, J. M. Jr., Huttner, W. B., and Greengard, P. 1983 Synapsin 1 (Protein 1), a nerve terminal-specific phosphoprotein II. It's specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol., 96:1355–1373.

    Google Scholar 

  3. Bähler, M., and Greengard, P. 1987. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature, 326:704–707.

    Google Scholar 

  4. Harada, A., Sobue, K., and Hirokawa, N. 1990. Developmental changes of synapsin I subcellular localization in rat cerebelar neurons. Cell Struct. Funct., 15:329–342.

    Google Scholar 

  5. Hirokawa, N., Sobue, K., Kanda, K., Harada, A., and Yorifuji, H. 1989. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin I. J. Cell Biol., 108:111–126.

    Google Scholar 

  6. Hirokawa, N. 1990. Molecular architecture and dynamics of the neuronal cytoskeleton. Pages 5–74, in Burgoyne, R. D. (ed). The Neuronal Cytoskeleton, Wiley-Liss, New York.

    Google Scholar 

  7. Nestler, E., and Greengard, P. 1982. Nerve impulses increase the phosphorylation state of protein I in rat superior cervical ganglion. Nature, 296:452–454.

    Google Scholar 

  8. Wang, J. K. T., Walaas, S. I., and Greengard, P. 1988. Protein phosphorylation in nerve terminal: comparison of calcium/diacylglycerol-dependent systems. J. Neurosci., 8:281–288.

    Google Scholar 

  9. Dolphin, A. C., and Greengard, P. 1981 Serotonin stimulates phosphorylation of protein 1 in the facial motor nucleus of rat brain. Nature, 289:76–79.

    Google Scholar 

  10. Aubert-Foucher, E., and Font, B. 1990. Limited proteolysis of synapsin I: Identification of the region of the molecule responsible for its association with microtubules. Biochem., 29:5351–5357.

    Google Scholar 

  11. Thiel, G., Sielhof, T. C., and Greengard, P. 1990. Synapsin II: Mapping of a domain in the NH2 terminal region which binds to small synaptic vesicles. J. Biol. Chem., 265:16527–16533.

    Google Scholar 

  12. Greengard, P.; Valtorta, F.; Czernik, A. J., and Benfenati, F. 1993. Synaptic vesicle phophoproteins and regulation of synaptic function. Science, 259:780–785.

    Google Scholar 

  13. Shaywitz, B. A., and Fletcher, J. M. 1993. Neurological, cognitive and behavioral sequelae of hypoxic-ischemic encephalopathy. Semin. Perinatol., 17:330–337.

    Google Scholar 

  14. Levine, S. 1960. Anoxic-ischemic encephalopathy in rats. Amer. J. Pathol., 36:1–17.

    Google Scholar 

  15. Rice, J. E. III, Vannucci, R. C., and Brierley, J. B. 1981. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol., 9:131–141.

    Google Scholar 

  16. Lipton, S. A., and Rosemberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med., 330:613–622.

    Google Scholar 

  17. Choi, D. V. 1985. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett., 58:293–297.

    Google Scholar 

  18. Pulsinelli, W. A., and Jacewicz, M., Levy, D. E., Petito, C. K., and Plum, F. 1997. Ischemic brain injury and the therapeutic window. Ann. N.Y. Acad. Sci., 835:187–193.

    Google Scholar 

  19. Vannucci, R. C. 1993. Mechanisms of perinatal hypoxic-ischemic brain damage. Semin. Perinatol., 17:330–337.

    Google Scholar 

  20. Bômont, L., Bilger, A., Boyet, S., Vert, P., and Nehlig, A. 1992. Acute hypoxia induces specific changes in local cerebral glucose utilization at different postnatal ages in the rat. Dev. Brain Res., 66:33–45.

    Google Scholar 

  21. Harrison, S. M.; Jarvie, P. E., and Dunckley, P. R. 1988. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res., 441:72–80.

    Google Scholar 

  22. Dunkley, P. R., Heath, J. W., Harrison, S. M., Jarvie, P. E., Glenfield, P. J., and Rostas, J. A. P. 1988. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: Homogeneity and morphology of subcellular fractions. Brain Res., 441:59–71.

    Google Scholar 

  23. Keiding, R., Horder, M., and Gerhardt, W. 1974. Recommended methods for determination of four enzymes in blood. Scand. J. Clin. Lab. Invest., 33:291–306.

    Google Scholar 

  24. Lazarovici, P., and Lelkes, P. I. 1992. Pardaxin induces exocytosis in bovine adrenal medullary chromaffin cells independent of calcium. J. Pharmacol. Exp. Ther., 263:1317–1326.

    Google Scholar 

  25. Laemmli, U. K. 1951. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 277:680–685.

    Google Scholar 

  26. Presek, P., Jenssen, S., Dreyer, F., Jarvie, P. E., Findik, D., and Dunkley, P. R. 1992. Tetanus toxin inhibits depolarization-stimulated protein phosphorylation in rat cortical synaptosomes: effect of synapsin 1 phosphorylation and translocation. J. Neurochem., 5:1336–1343.

    Google Scholar 

  27. de Mattos Dutra, A., de Freitas, M. S., Schroder, N., Zilles, A. C., Wajner, M., and Pessoa-Pureur, R. 1997. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res., 763:221–231.

    Google Scholar 

  28. Bradford, M. M. 1977. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:48–54.

    Google Scholar 

  29. Choi, D. V. 1988 Glutamate neurotoxicity and disease of the nervous system. Neuron, 1:623–634.

    Google Scholar 

  30. Lee, K. S., Frank, S., Vanderklish, P., Arai, A., and Lynch, G. 1991. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc. Natl. Acad. Sci., 88:7233–7237.

    Google Scholar 

  31. Arai, A., Kessler, M., Lee, K., and Lynch, G. 1990. Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices. Brain Res., 532:63–68.

    Google Scholar 

  32. Yamamoto, H. Fukunaga, K. Lee, K., and Soderling, T. R. 1992. Ischemia-induced loss of brain Calcium/Calmodulin-dependent protein kinase II. J. Neurochem., 58:1110–1117.

    Google Scholar 

  33. Robinson, P. J., and Dunkley, P. R. 1985. Depolarisation-dependent protein phosphorylation and dephosphorylation in rat cortical synaptosomes is modulated by calcium. J. Neurochem., 44:338–348.

    Google Scholar 

  34. Lohman, S. M., Veda, T., and Greengard, P. 1978. Ontogeny of synaptic phosphoproteins in brain. Proc. Natl. Acad. Sci., USA 75:4037–4041.

    Google Scholar 

  35. Hoesche, C., Sauerwald, A., Veh, R. W., Kripp, B., and Kilimann, M. W. 1993. The 5′-flanking region of the rat synapsin I gene directs neuron-specific and developmentally regulated reporter gene expression in transgenic mice. J. Biol. Chem., 268: 26494–26502.

    Google Scholar 

  36. Haas, C. A., and Gennaro L. J. 1988. Multiple synapsin messenger RNAs are differentially spliced during neuronal development. J. Cell Biol., 106:195–203

    Google Scholar 

  37. Nestler, E. J., and Greengard, P. 1984. Applications of protein phosphorylation systems to other areas of neuroscience. Pages 215–242, in Protein Phosphorylation in the Nervous System, John Wiley and Sons, New York.

    Google Scholar 

  38. Lindvall, O., Kokaia, Z., Bengzon, J., Elmer, E., and Kokaia, M. 1994. Neurotrophins and brain insults. Trends Neurosci., 17:490–496.

    Google Scholar 

  39. Oshima, M., Koizumi, S., Fugita, K., and Guroff, G. 1989. Nerve growth factor-induced decrease in the calpain activity of PC12 cells. J. Biol. Chem., 264:20811–20816.

    Google Scholar 

  40. Penrice, J., Lorek, A., Cady, E. B., Amess, P. N., Wylezinska, M., Cooper, C. E., D'Souza, P., Brown, G. C., Kirkbride V., Edwards, A. D., Wyatt, J. S., and Reynolds, O. R. 1997. Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr. Res., 41:795–802.

    Google Scholar 

  41. Blumberg, R. M., Cady, E. B., Wigglesworth, J. S., McKenzie, J. E., Edwards, A. D., 1997. Relation between delayed impairment of cerebral energy metabolism and 1998. Infarctation following transient focal hypoxia-ischemia in the developing brain. Exp. Brain Res., 113(1):130–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretto, M.B., de Mattos-Dutra, Â., Arteni, N. et al. Effects of Neonatal Cerebral Hypoxia-Ischemia on the In Vitro Phosphorylation of Synapsin 1 in Rat Synaptosomes. Neurochem Res 24, 1263–1269 (1999). https://doi.org/10.1023/A:1020925107130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020925107130

Navigation