Journal of Insect Behavior

, Volume 12, Issue 6, pp 723–736 | Cite as

Age and Sex-Based Differences in the Use of Prey Sensory Cues in Wolf Spiders (Araneae: Lycosidae)

  • Matthew H. Persons
  • George W. Uetz


Differences in foraging patterns mediated by sensory cues were examined between adult and juvenile male and female wolf spiders (Schizocosa rovneri; Lycosidae). Patch residence time for thirty-one spiders were tested among juveniles and adults in artificial foraging patches. Patches varied in sensory information provided by live prey (crickets) as follows: visual stimuli alone; vibratory stimuli alone; visual and vibratory stimuli together; and control (no stimuli). Spiders moved between patches for one hour, but could not feed. Adult Schizocosa rovneri use primarily visual information to determine patch residence time, but juveniles use vibratory cues as well. Significant age and sex-based differences in the use of sensory cues suggest that observed divergent foraging strategies are partly due to the use of different perceptual cues in prey detection.

age sex foraging wolf spiders Schizocosa rovneri patch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspey, W. P. (1975). Ontogeny of display in immature Schizocosa crassipes (Araneae: Lycosidae): Psyche. 82: 174–180.Google Scholar
  2. Babu, K. S. (1975). Postembryonic development of the central nervous system of the spider Argiope aurantia (Lucas). J. Morphol. 146: 325–342.Google Scholar
  3. Babu, K. S. (1985). Patterns of arrangement and connectivity in the central nervous system of arachnids. In: Barth, F. G. (ed) Neurobiology of arachnids. Springer-Verlag, Berlin, Germany, pp. 5–35.Google Scholar
  4. Barth, F. G. (1982). Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt, P. N. and Rovner, J. S. (eds.) Spider communication: mechanisms and ecological significance. Princeton Univ. Press. Princeton, New Jersey, pp. 67–120.Google Scholar
  5. Barth, F. G. (1985). Neurobiology of Arachnids. Springer-Verlag Press, Berlin.Google Scholar
  6. Bell, W. J. (1991). Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall, London.Google Scholar
  7. Bye, F. N., Jacobsen, B. V., and Sonerud, G. A. (1992). Auditory prey location in a pause-travel predator: search height, search time, and attack range of Tengmalm's owls (Aegolius funereus). Behav. Ecol. 3: 266–276.Google Scholar
  8. Cady, A. B. (1984). Microhabitat selection and locomotor activity of Schizocosa ocreata (Walckenaer) (Araneae: Lycosidae). J. Arachnol. 11: 297–307.Google Scholar
  9. Charnov, E. L. (1982). The theory of sex allocation. Princeton University Press, Princeton, New Jersey.Google Scholar
  10. Charnov, E. L. (1976). Optimal foraging: the marginal value theorem. Theor. Popul. Biol. 9: 129–136.Google Scholar
  11. Cook, R. M., and Cockrell, B. J. (1978). Predator ingestion rate and its bearing on feeding time and the theory of optimal diets. J. Anim. Ecol. 46: 115–125.Google Scholar
  12. Edgar, W. D. (1971). Seasonal weight changes, age structure, natality and mortality in the wolf spider Pardosa lugubris Walck in Central Scotland. Oikos. 22: 84–92.Google Scholar
  13. Ford, M. J. (1978). Locomotory activity and the predation strategy of the wolf-spider Pardosa amentata (Clerck) (Lycosidae). Anim. Behav. 26: 31–35.Google Scholar
  14. Givens, R. (1978). Dimorphic foraging strategies of a salticid spider (Phidippus audax). Ecology 59: 309–321.Google Scholar
  15. Holmberg, R. G., and Turnbull, A. L. (1982). Selective predation in a euryphagous invertebrate predator, Pardosa vancouveri (Arachnida: Araneae). Can. Ent. 114: 243–257.Google Scholar
  16. Kreiter, N., and Wise, D. H. (1996). Age-related changes in movement patterns in the fishing spider, Dolomedes triton (Araneae, Pisauridae). J. Arachnol. 24: 24–33.Google Scholar
  17. Land, M. F. (1985). The morphology and optics of spider eyes. In: Barth F. G. (ed.) Neurobiology of arachnids. Berlin: Springer-Verlag Press, pp. 53–78.Google Scholar
  18. Lizotte, R. S., and Rovner, J. S. (1988). Nocturnal capture of fireflies by lycosid spiders: visual versus vibratory stimuli. Anim. Behav. 36: 1809–1815.Google Scholar
  19. Morse, D. H. (1993). Choosing hunting sites with little information: patch-choice responses of crab spiders to distant cues. Behav. Ecol. 4: 61–65.Google Scholar
  20. Morse, D. H., and Fritz, R. S. (1982). Experimental and observational studies of patch-choice at different scales by the crab spider Misumena vatia. Ecology. 63: 172–182.Google Scholar
  21. Olive, C. W. (1982). Behavioral response of a sit-and-wait predator to spatial variation in foraging gain. Ecology 63: 912–920.Google Scholar
  22. Pasquet, A., Ridwan, A., and LeBorgne, R. (1994). Presence of potential prey affects web-building in an orb-weaving spider Zygiella x-notata. Anim. Behav. 47: 477–480.Google Scholar
  23. Persons, M. H. 1999. Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae). Anim. Behav. 57: 81–88.Google Scholar
  24. Persons, M. H., and Uetz, G. W. (1996a). The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae). Anim. Behav. 51: 1285–1293.Google Scholar
  25. Persons, M. H., and Uetz, G. W. (1996b). Wolf spiders vary patch residence time in the presence of chemical cues from prey (Araneae: Lycosidae). J. Arachnol. 24: 76–79.Google Scholar
  26. Persons, M. H., and Uetz, G. W. (1997a). Residence time decisions in wolf spiders: is perceiving prey as important as eating prey? Ecoscience 4: 1–5.Google Scholar
  27. Persons, M. H., and Uetz, G. W. (1997b). The effect of prey movement on attack behavior and patch residence decision rules of wolf spiders (Araneae: Lycosidae). Insect. Behav. 10: 737–752.Google Scholar
  28. Persons, M. H., and Uetz, G. W. (1998). Pre-sampling sensory information and prey density assessment by wolf spiders (Araneae: Lycosidae). Behav. Ecol. Google Scholar
  29. Pyke, G. H. (1984). Optimal foraging theory: a critical review. Ann. Rev. Ecol. Syst. 15: 523–575.Google Scholar
  30. Pyke, G. H., Pulliam, H. R., and Charnov, E. L. (1977). Optimal foraging: a selective review of theory and tests. Q. Review. Biol. 52: 137–154.Google Scholar
  31. Rice, W. R. (1983). Sensory modality: an example of its effect on optimal foraging behavior. Ecology 64: 403–406.Google Scholar
  32. Riechert, S. E. (1985). Decisions in multiple goal contexts: habitat selection of the spider. Agelenopsis aperta (Gertsch). Z. Tierpsychol. 70: 53–69.Google Scholar
  33. Scheffer, S. J., Uetz, G. W., and Stratton, G. E. (1996). Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behav. Ecol. Sociobiol. 38: 17–23.Google Scholar
  34. Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2: 369–404.Google Scholar
  35. Singer, F., and Riechert, S. E. (1994). Tests for sex differences in fitness-linked traits in the spider Agelenopsis aperta (Araneae: Agelenidae). J. Insect Behav. 7: 517–531.Google Scholar
  36. Stephens, D. W., and Krebs, J. R. (1986). Foraging Theory. Princeton University Press, Princeton, New Jersey.Google Scholar
  37. Uetz, G. W., and Denterlein, G. (1979). Courtship behavior, habitat, and reproductive isolation in Schizocosa rovneri Uetz and Dondale (Araneae: Lycosidae). J. Arachnol. 7: 121–128.Google Scholar
  38. Uetz, G. W., and Dondale, C. D. (1979). A new spider in the genus Schizocosa (Araneae: Lycosidae) from Illinois. J. Arachnol. 7: 86–88.Google Scholar
  39. Wise, D. H., and Wagner, J. D. (1992). Evidence of exploitative competition among young stages of the wolf spider Schizocosa ocreata. Oecologia. 91: 7–13.Google Scholar
  40. Zar, J. H. (1984). Biostatistical Analysis. 2nd edition. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Matthew H. Persons
    • 1
  • George W. Uetz
    • 1
  1. 1.Department of Biological SciencesML 0006 University of CincinnatiCincinnati
  2. 2.Department of BiologySusquehanna UniversitySelinsgrove

Personalised recommendations