Skip to main content
Log in

Entanglement of Resonantly Coupled Field Modes in Cavities with Vibrating Boundaries

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study time dependence of various measures of entanglement (covariance entanglement coefficient, purity entanglement coefficient, normalized distance coefficient, entropy coefficients) between resonantly coupled modes of the electromagnetic field in ideal cavities with oscillating boundaries. Two types of cavities are considered — a three-dimensional cavity possessing eigenfrequencies ω3 = 3ω1, whose wall oscillates at the frequency ωw = 2ω1, and a one-dimensional (Fabry–Perot) cavity with an equidistant spectrum ωn = nω1 where the distance between perfect mirrors oscillates at the frequencies ω1 and 2ω1. The behavior of entanglement measures in these cases turns out to be completely different, although all three coefficients demonstrate qualitatively similar time dependences in each case (except some specific situations where the covariance entanglement coefficient based on traces of covariance submatrices seems to be essentially more sensitive to entanglement than other measures, which are based on determinants of covariance submatrices). Different initial states of the field, namely, vacuum, squeezed vacuum, thermal, Fock, and even/odd coherent states, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Proc.Camb.Phil.Soc., 31, 555 (1935).

    Google Scholar 

  2. E. Schrödinger, Naturwissenschaften, 23, 807, 823, 844 (1935) [English translation in: J. A. Wheeler and W. H. Zurek (eds.), Quantum Theory and Measurement, Princeton University Press (1983), p. 152].

    Google Scholar 

  3. A. Einstein, B. Podolsky, and N. Rosen, Phys.Rev., 47, 777 (1935).

    Google Scholar 

  4. S. M. Barnett and S. J. D. Phoenix, Phys.Rev. A, 40, 2404 (1989); 44, 535 (1991).

    Google Scholar 

  5. A. Mann, B. C. Sanders, and W. J. Munro, Phys.Rev. A, 51, 989 (1995).

    Google Scholar 

  6. C. H. Bennett, H. J. Herbert, S. Popescu, and B. Schumacher, Phys.Rev. A, 53, 2046 (1996); S. Popescu and D. Rohrlich, Phys.Rev. A, 56, R3319 (1997); V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys.Rev.Lett., 78, 2275 (1997).

    Google Scholar 

  7. V. Vedral and M. B. Plenio, Phys.Rev. A, 57, 1619 (1998).

    Google Scholar 

  8. W. K. Wootters, Phys.Rev.Lett., 80, 2245 (1998).

    Google Scholar 

  9. M. G. A. Paris, J.Opt.B: Quantum Semiclass.Opt., 1, 299 (1999); M. J. Donald and M. Horodecki, Phys.Lett. A, 264, 257 (1999); M. Horodecki, P. Horodecki, and R. Horodecki, Phys.Rev.Lett., 84, 2014 (2000); Phys.Rev.Lett., 84, 2263 (2000); S. Parker, S. Bose, and M.B. Plenio, Phys.Rev. A, 61, 032305 (2000);. Hiroshima, Phys.Rev. A, 63, 022305 (2001).

    Google Scholar 

  10. R. Horodecki, P. Horodecki, and M. Horodecki, Phys.Lett. A, 210, 377 (1996); K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys.Rev. A, 58, 883 (1998);. Santos and M. Ferrera, Phys.Rev. A, 62, 024101 (2000); P. Zanardi, C. Zalka, and L. Faoro, Phys.Rev. A, 62, 030301 (2000); W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys.Rev. A, 64, 030302 (2001).

    Google Scholar 

  11. K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys.Rev.Lett., 80, 5524(1998); R. M. Angelo, K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys.Rev. A, 64, 043801 (2001); J. Gemmer and G. Mahler, Euro. Phys.J. D, 17, 385 (2001).

    Google Scholar 

  12. C. Witte and M. Trucks, Phys.Lett. A, 257, 14 (1999); M. Ozawa, Phys.Lett. A, 268, 158 (2000).

    Google Scholar 

  13. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J.Phys.A: Math.Gen,, 35, 7137 (2002).

    Google Scholar 

  14. A. S. M. de Castro and V. V. Dodonov, J.Russ.Laser Res., 23, 93 (2002).

    Google Scholar 

  15. V. V. Dodonov, A. S. M. de Castro, and S. S. Mizrahi, Phys.Lett. A, 296, 73 (2002).

    Google Scholar 

  16. V. V. Dodonov and A. B. Klimov, Phys.Rev. A, 53, 2664 (1996).

    Google Scholar 

  17. F. R. Gantmakher, The Theory of Matrices, Nauka, Moscow (1966).

    Google Scholar 

  18. V. Peřinová, A. Lukš, J. Křepelka, C. Sibilia, and M. Bertolotti, J.Mod.Opt., 38, 2429 (1991).

    Google Scholar 

  19. V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, and A. Wünsche, J.Mod.Opt., 47, 633 (2000); A. Wünsche, V. V. Dodonov, O. V. Man'ko, and V. I. Man'ko, Fortschr.Phys., 49, 1117 (2001).

    Google Scholar 

  20. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys.Rev.Lett., 84, 2722 (2000); R. Simon, Phys.Rev.Lett., 84, 2726 (2000); R. F. Werner and M. M. Wolf, Phys.Rev.Lett., 86, 3658 (2001); P. Marian, T. A. Marian, and H. Scutaru, J.Phys.A: Math.Gen., 34, 6969 (2001); S. Scheel and D.-G. Welsch, Phys.Rev.A, 64, 063811 (2001).

    Google Scholar 

  21. V. V. Dodonov and V. I. Man'ko, in: Group Theory, Gravitation and Elementary Particle Physics, Proceedings of the P.N.Lebedev Physycal Institute, Nauka, Moscow (1986), Vol. 167, p. 7 [translated by Nova Science, New York (1987), Vol. 167, p. 7].

    Google Scholar 

  22. A. Lukš, and V. Peřinová, Czech.J.Phys., 39, 392 (1989).

    Google Scholar 

  23. A. S. Holevo, M. Sohma, and O. Hirota, Phys.Rev. A, 59, 1820 (1999).

    Google Scholar 

  24. V. V. Dodonov, in: V. V. Dodonov and V. I. Man'ko (eds.), Theory of Nonclassical States of Light, Taylor & Francis, London (in press), p. 153.

  25. E. Schrödinger, Ber.Kgl.Akad.Wiss.Berlin, 24, 296 (1930); H. P. Robertson, Phys.Rev., 35, 667 (1930).

    Google Scholar 

  26. V. V. Dodonov, E. V. Kurmyshev, and V. I. Man'ko, Phys.Lett. A, 79, 150 (1980).

    Google Scholar 

  27. V. V. Dodonov and V. I. Man'ko, Invariants and Evolution of Nonstationary Quantum Systems, Proceedings of the P.N.Lebedev Physycal Institute, Nova Science, New York (1989), Vol. 183.

    Google Scholar 

  28. G. S. Agarwal, Phys.Rev. A, 3, 828 (1971).

    Google Scholar 

  29. V. Peřinová, J. Křepelka, J. Peřina, A. Lukš, and P. Szlachetka, Opt.Acta, 33, 15 (1986).

    Google Scholar 

  30. V. V. Dodonov, J.Phys.A: Math.Gen, 33, 7721 (2000); V. V. Dodonov and O. V. Man'ko, J.Russ.Laser Res., 21, 438 (2000); J.Opt.Soc.Am. A, 17, 2403 (2000).

    Google Scholar 

  31. D. A. Trifonov, J.Opt.Soc.Am. A, 17, 2486 (2000).

    Google Scholar 

  32. V. V. Dodonov, in: M. W. Evans (ed.), Modern Nonlinear Optics, Advances in Chem.Phys.Series, Wiley, New York (2001), Vol. 119, Pt. 3, p. 309.

    Google Scholar 

  33. V. V. Dodonov, A. B. Klimov, and V. I. Man'ko, Phys.Lett. A, 142, 511 (1989).

    Google Scholar 

  34. J. Schwinger, Proc.Nat.Acad.Sci.USA, 90, 958 (1993).

    Google Scholar 

  35. G. Barton and C. Eberlein, Ann.Phys.(NY), 227, 222 (1993).

    Google Scholar 

  36. A. Lambrecht, M.-T. Jaekel, and S. Reynaud, Phys.Rev.Lett., 77, 615 (1996).

    Google Scholar 

  37. C. K. Law, Phys.Rev. A, 49, 433 (1994); 51, 2537 (1995).

    Google Scholar 

  38. R. Schützhold, G. Plunien, and G. Soff, Phys.Rev. A, 57, 2311 (1998).

    Google Scholar 

  39. R. Schützhold, G. Plunien, and G. Soff, Phys.Rev. A, 65, 043820 (2002); G. Schaller, R. Schützhold, G. Plunien, and G. Soff, Phys.Rev. A, 66, 023812 (2002).

    Google Scholar 

  40. H. Saito and H. Hyuga, Phys.Rev. A, 65, 053804 (2002).

    Google Scholar 

  41. L. A. S. Machado and P. A. Maia Neto, Phys.Rev. D, 65, 125005 (2002).

    Google Scholar 

  42. C. K. Cole and W. C. Schieve, Phys.Rev. A, 64, 023813 (2001).

    Google Scholar 

  43. M. Crocce, D. A. R. Dalvit, and F. D. Mazzitelli, Phys.Rev. A, 64, 013808 (2001).

    Google Scholar 

  44. A. V. Dodonov and V. V. Dodonov, Phys.Lett. A, 289, 291 (2001).

    Google Scholar 

  45. V. V. Dodonov, J.Phys.A: Math.Gen., 31, 9835 (1998).

    Google Scholar 

  46. V. V. Dodonov and M. A. Andreata, J.Phys.A: Math.Gen., 32, 6711 (1999).

    Google Scholar 

  47. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York (1994).

    Google Scholar 

  48. V. V. Dodonov, Phys.Lett. A, 213, 219 (1996).

    Google Scholar 

  49. V. V. Dodonov, I. A. Malkin, and V. I. Man'ko, Physica, 72, 597 (1974).

    Google Scholar 

  50. M. A. Andreata and V. V. Dodonov, J.Phys.A: Math.Gen., 33, 3209 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreata, M.A., Dodonov, A.V. & Dodonov, V.V. Entanglement of Resonantly Coupled Field Modes in Cavities with Vibrating Boundaries. Journal of Russian Laser Research 23, 531–564 (2002). https://doi.org/10.1023/A:1020918630886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020918630886

Navigation